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Abstract

This research introduces the concept of navigation potential, NP, to quantify the
intrinsic ability to navigate using a given signal. In information theory, the Shannon
Hartley capacity theorem provides the theoretical limit on the amount of information
that may be recovered error-free over a bandlimited channel corrupted by Gaussian
noise. As developed under this research, NP theory is a new, analogous concept that
provides a theoretical performance limit on estimating navigation parameters from
a received signal that is modelled through a stochastic mapping of the transmitted
signal and measurement noise. Essentially, NP theory is an information theory-like
concept applied to navigation systems and is particularly useful when using signals
of opportunity (SOP) for navigation.

SOP-based time difference of arrival (TDOA) measurements are a promising
positioning alternative when the Global Positioning System (GPS) is not available.
SOP are signals that are transmitted for a purpose other than navigation; however,
SOP may also be used for positioning if properly exploited. A SOP-based TDOA
measurement navigation process, for which the navigation solution may be found
using well known GPS techniques, is introduced.

NP theory is applied to SOP-based TDOA systems through the proper selection
of a stochastic mapping. When the stochastic mapping assumes a rather simple
model, e.g., the received signal is the transmitted signal in additive, Gaussian noise,
NP results validate previously established performance metrics. In addition, by using
a multipath mapping, the NP may be found for a received signal consisting of the



transmitted signal, multiple delayed and attenuated replicas of the transmitted signal,
and measurement noise. This innovative development captures the dominant error
source foreseen in SOP-based navigation systems; consequently, multipath-based NP
may be considered a better predictor of actual system performance than metrics based
on the transmitted signal in measurement noise alone.

The general nature of NP theory accommodates its application to signals other
than SOP. As an example, NP is used to predict GPS correlation error performance.
NP provides novel theoretical performance bounds on GPS correlation error for the
case in which the stochastic mapping is chosen to be a multipath mapping. Prior
to this research, no theoretical performance bounds on GPS correlation error were
available that address multipath. When the mapping is chosen to be the transmitted
signal in measurement noise alone (i.e., no multipath), NP provides additional insight
beyond, yet consistent with, previously developed GPS correlation error performance
bounds.

xviii



The Navigation Potential of Signals of Opportunity-
Based Time Difference of Arrival Measurements

Chapter 1 - Introduction
This research introduces the concept of navigation potential to quantify the in-

trinsic ability to navigate from a given signal. In information theory, the Shannon
Hartley capacity theorem provides the theoretical limit on the amount of information
that may be recovered error-free over a Gaussian noise-corrupted, bandwidth-limited
channel [36,70]. Navigation potential theory is a new, analogous concept that pro-
vides a theoretical performance limit on estimating navigation parameters from a
received signal. Essentially, navigation potential theory is an information theory-like
concept applied to navigation systems. Navigation potential, by itself, is defined as a
scalar metric that quantifies the ability to estimate navigation parameters of interest.
For example, just as information theory predicts that an arbitrarily large amount of
information may be recovered error-free from a noiseless, bandwidth-limited channel,
navigation potential predicts that the error in the navigation parameters’ estimates
using a transmitted signal absent of measurement noise may be arbitrarily small.

This dissertation is dedicated to the development of navigation potential the-
ory. Presented herein is the motivation for navigation potential theory, previous
results which provide insight into navigation potential theory, background material
necessary for understanding the mathematics of navigation potential theory, the for-
mal derivation of navigation potential theory, and selected applications that demon-



strate navigation potential theory. The remainder of this chapter will motivate and
overview this research, state the research contributions, and outline the remainder of
this dissertation.

1.1 Research Motivation and Overview
The Global Positioning System (GPS) has revolutionized position determination

on Earth. Systems and applications have become dependent upon reliable and ac-
curate position determination. There are many navigation alternatives when GPS
navigation solutions are unattainable or degraded. An area of recent interest in the
literature [18,34,35,62] is the navigational use of “signals of opportunity,” or SOP.1

SOP are signals that are transmitted for non-navigation purposes, but can be ex-
ploited for navigation using various techniques. SOP are convenient sources of navi-
gation, in part, because they are often more numerous, and at a higher signal-to-noise
ratio at the receiver, than GPS signals [34].

Given a limited ability as to the number of SOP that may be exploited, SOP
navigation entails a process of selecting which SOP to exploit from the numerous
possibilities. Since each SOP may possess unique transmitted signal and expected
measurement noise characteristics, this research motivates that the proper selection
of which SOP to exploit should be based, in part,2 upon the theoretical navigation
potential of a given SOP. Prior to the navigation potential theory developed in this
research, SOP were chosen based upon their coverage areas and signal structures

1Throughout this dissertation, SOP may be used to denote either “signal of opportunity” or “signals
of opportunity”. The plurality should be apparent from the context.

2Coverage area, desired frequency bands, etc. are also factors in selecting SOP.
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(from the perspective of preferring either well-understood, simple signals or signals
with synchronization pulses). There was no rigorous method to determine the po-
tential navigation performance of a proposed SOP. The navigation potential theory
developed in this research enables a designer to compare and select SOP based upon
the theoretical performance bounds of the resulting navigation solution.

Navigation potential (NP) is developed based upon a stochastic mapping of the
transmitted signal and measurement noise into the received signal. This approach
enables the designer to select mappings consistent with the received signal’s antici-
pated relationship with the transmitted signal and measurement noise. Then, the NP
of the received signal quantifies the ability to determine the navigation parameters of
interest in terms of the transmitted signal and measurement noise. NP relates sig-
nal characteristics to the ability to navigate through the Fisher Information Matrix
(FIM) [43]. The FIM provides performance bounds on parameter estimates from a
given signal (through its probability density function). The FIM is well-known for a
signal without noise, or a signal in additive, measurement noise, given the signal and
noise joint probability density function [28, 43, 82]. NP theory benefits from these
results when the mappings are chosen such that the received signal is the transmitted
signal in additive measurement noise, although the NP framework is not limited to
these rather simple mappings.

The general approach of NP theory may be used to predict navigation perfor-
mance for a wide variety of received signal models for which no performance metrics
were previously available. For example, through the proper selection of a multipath
mapping, the NP may be found for a received signal consisting of the transmitted
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signal, multiple delayed and attenuated replicas of the transmitted signal, and mea-
surement noise. Multipath-based NP is considered a better predictor of the actual
system performance than that of a metric based upon the transmitted signal in mea-
surement noise alone, since significant multipath is often a factor for navigation [18].
This result, in and of itself, is an innovative development, since multipath is the dom-
inant error source foreseen in SOP-based navigation systems.

While SOP navigation provides a motivation for creating NP theory, the gen-
eral nature of NP accommodates its application to signals other than SOP. As an
example, NP may be used to predict GPS correlation error performance. NP pro-
vides novel theoretical performance bounds on GPS correlation error for the case in
which the stochastic mapping is chosen to be a multipath mapping. Prior to this
research, no theoretical performance bounds on GPS correlation error which address
multipath were available. When the mapping is chosen to be the transmitted signal
in measurement noise alone, NP provides additional insight over, yet is consistent
with, previously developed GPS correlation error performance bounds.

1.2 Research Contributions
The focus of this research is the development of NP theory. In the previous

section, specific mappings and signals were referenced to motivate this research; NP
theory is not confined to, or limited by, these constraints. This section details more
clearly (than the previous section) the specific, claimed research contributions of this
dissertation.
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1.2.1 Navigation Potential (NP) Theory
The primary contribution of this research is NP theory, or the concept of charac-

terizing the ability to estimate parameters of interest, given a received signal. This
new thought process provides a selection criterion that addresses the needs of the
navigation user–namely, it answers the question, “How well may this signal be used
for navigation?” NP theory enables a wide variety of signals’ navigation ability to
be predicted and compared.

1.2.2 NP for Signals in Multipath and Noise
NP theory is applied to a received signal modeled as the transmitted signal,

attenuated and delayed replicas of the transmitted signal, and measurement noise.
Prior to this research, no performance bounds were available that addressed estimat-
ing navigation parameters from a received signal with multipath effects. This novel
result is a significant contribution to radio-frequency-based navigation, since multi-
path is a major error source in most radio-frequency-based navigation systems.

1.2.3 Predicting GPS Correlation Error Performance Bounds
This research uses NP theory to predict GPS correlation error performance

bounds for the case in which the received signal contains multipath signals. Prior
to this research, no theoretical performance bounds were available that address this
issue. Since multipath is the dominant error source for code-tracking GPS, this
contribution provides significant and much needed insight into GPS correlation error
performance. When multipath is absent, NP provides insight over, yet is consistent
with, previously published performance bounds.
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1.2.4 SOP Navigation Process
This research presents a systematic process for using SOP-based time difference of

arrival (TDOA) measurements for navigation. This new process may be applied over
a wide range of SOP, thereby introducing a more universal SOP navigation approach
than previous SOP navigation methods. Signal selection is addressed appropriately
with the newly-found NP. Furthermore, the navigation solution is a novel approach
that permits SOP-based TDOA measurements to be used in well-understood GPS
algorithms.

1.3 Dissertation Outline
Chapter 2 motivates using time difference of arrival (TDOA) measurements ob-

tained from signals of opportunity (SOP) as an alternative to GPS navigation and
provides the background upon which this research is based. Chapter 3 presents a
systematic SOP navigation approach to standardize SOP navigation, to apply SOP-
based TDOA measurements to a well-known navigation algorithm, and to motivate
the development of the navigation potential (NP).

Chapter 4 presents the concept of NP. A multipath model and the resulting
NP are developed. Furthermore, the NP is found for the case in which the received
signal may be appropriately modeled as a Gaussian process.

Chapter 5 validates and demonstrates NP theory with several examples. First,
it is shown that previous performance metrics are special cases of NP. Second, it is
shown that GPS correlation error performance can be predicted using NP theory for
the case in which the received signal is the transmitted signal in measurement noise.
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Finally, GPS correlation error performance is developed using NP theory for the case
in which the received signal is modeled as the transmitted signal with multipath and
noise. Chapter 6 provides a research summary and an outline for future research.

Several appendices provide supporting details to the developments in the main
document. Appendix A reviews common analog modulation techniques frequently
used in SOP. Appendix B presents SOP examples that may be used for navigation.
Appendix C lists several probability density identities used in the development of
navigation potential. Appendix D outlines stochastic Fourier analysis. Appendix E
develops the autocorrelation kernel for a stochastic process formed as the Fourier
transform of a finite time-length observation of a stochastic process.
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Chapter 2 - Signals of Opportunity Background

2.1 Introduction
This chapter introduces navigation alternatives to the Global Positioning System

(GPS), summarizes previous exploitations of signals of opportunity (SOP) for navi-
gation, and describes traditional time difference of arrival (TDOA) navigation. SOP
are transmitted for a primary application other than navigation, yet with clever tech-
niques, they can also be used for navigation. One motivation for navigation potential
theory, developed later in this dissertation, is to provide a selection criterion for SOP
based upon how well a SOP may be used for navigation. This chapter motivates
that the exploitation of SOP for navigation is a promising navigation method.

Section 2.2 compares traditional navigation methods, exploiting SOP for nav-
igation, and other navigation methods. Section 2.2 also motivates using TDOA
measurements obtained from signals of opportunity (SOP) rather than other SOP
exploitation techniques.

The remainder of this chapter provides the background necessary to become
familiar with SOP and TDOA measurements, to prepare the reader for the new
developments that follow in subsequent chapters. Section 2.3 provides a summary
of the research conducted with SOP. Section 2.4 presents the current formation and
application of TDOA measurements. Finally, Section 2.5 provides a summary.

2.2 Alternatives to GPS Navigation
The Global Positioning System (GPS) provides an accurate position determi-

nation in a variety of environments. It is not surprising that the demand for such



information is growing beyond the capability that GPS can provide. GPS is a line-of-
sight (LOS) system–that is, the satellites must be in “view” of the receiver antenna
to receive the signal. Efforts are made to reduce this limitation, most notably in ur-
ban areas and indoors. Urban areas are characterized by tall buildings, which block
satellites from view and create multipath signals. Antennas indoors are not gener-
ally in view of the satellites; although in the 1-2 GHz region, the signals are present
but greatly attenuated.

Several methods to aid in GPS navigation, or to navigate without GPS, are
presented in this section. The objective of this section is to familiarize the reader
with these methods and motivate that navigation using signals of opportunity (SOP)
is the most promising alternative to GPS navigation. Similar to GPS, each method
discussed is self-solving and passive. With self-solving navigation, the user’s position
is determined by the user. For example, a satellite image used to locate the user is not
considered a self-solving technique. With passive navigation, the user at the location
to be determined does not transmit anything, and this provides the benefits of reduced
power consumption, maintaining covert operations, allowing unlimited users, etc.

Besides self-solving and passive, each method discussed also falls into one of two
solution categories–absolute or incremental. Absolute navigation determines the
user’s position without prior knowledge of the user’s position. Incremental naviga-
tion determines the change in the user’s position from one time to another. When
combined with knowledge of the user’s starting position, incremental position can be
used to determine the user’s position (e.g., inertial navigation systems). Absolute po-
sitioning does not require knowledge of a prior position, allowing the user the ability
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to regain a position solution after losing track. The remainder of this section details
possible self-solving, passive navigation techniques that can be used as an alternative
to GPS positioning or to improve upon GPS positioning in urban areas or indoors.

2.2.1 Traditional Navigation
Traditional navigation techniques are forerunners to current GPS methods and

generally provide poorer accuracy than GPS; however, each alternative method may
aid navigation in urban areas or indoor environments. This non-exhaustive naviga-
tion list includes celestial navigation, long-range navigation, and an inertial naviga-
tion system.

2.2.1.1 Celestial Navigation. A user’s absolute position can be derived
by observing distant stars with a sextant, star charts, and a chronometer. Pre-
cise setup, precise star charts, and a timing accuracy on the order of 1 msec are re-
quired for celestial navigation to approach GPS-like accuracy [12]. The United States
Naval Observatory (USNO) maintains precise star charts and has implemented such
a scheme [12]. Another celestial navigation method is incremental navigation using
time difference of arrival (TDOA) measurements from x-ray pulsars. [17,69,74]

2.2.1.2 Long-Range Navigation (LORAN). LORAN is a federally pro-
vided navigation system for civil marine use in all of the coastal and inland navigable
waters and FAA-approved for use in the U.S. airspace. Loran-C, the system in use
today, covers much of the northern hemisphere and performs hyperbolic positioning
through the time-difference of arrival (TDOA) of synchronized pulse signals from a
“chain” of towers [53]. A typical chain consists of a master and 2-3 secondary tow-
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ers separated by approximately 1000 km. Each tower transmits high-power (1 MW
peak), synchronized pulses in the 90 to 110 kHz region. Loran-C provides a horizon-
tal position accuracy of approximately 250 m and is expected to be operation until
2008. [53]

2.2.1.3 Inertial Navigation System (INS). An INS is fundamentally
different from GPS in many ways. INS does not require receipt of any signal; con-
sequently, performance is independent of location (whether in urban areas or indoor
environments). INS is an incremental navigation technique; its solution is based
upon incremental position changes from a given initial position. The INS position
solution cannot be more accurate than the initial position accuracy [76]. Further-
more, the error in each increment accumulates over time, and INS is characterized by
an RMS position error that increases over time (called INS drift). Consequently, the
initial position accuracy, drift rate, and elapsed time since the initial position affect
the accuracy of the current INS-computed position estimate.

2.2.2 Signals of Opportunity (SOP)
SOP are signals from land-based or space-based transmitters that are transmit-

ted for a purpose other than navigation; however, they can be used also for naviga-
tion through proper exploitation. (Refer to Appendix B for several examples.) Their
exploitation is challenging, because the signal transmissions are generally unsynchro-
nized, the transmit time is unknown, and signal is not maintained by the navigational
user. In urban areas, SOP can provide many measurements which may potentially be
used to overcome blocked signals and identify multipath signals through a Receiver
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Autonomous Integrity Monitoring (RAIM) technique [57]. Signals of opportunity
have a much higher received signal power, possibly allowing the signals to be received
and exploited indoors. The following list is based upon the exploitation method used
with signals of opportunity:

2.2.2.1 Angle of Arrival (AOA). AOA measurements can be made using
an antenna triad by comparing the received signal into each of the three antennas.
A triad with 1m spacing between antennas may provide an absolute position with an
accuracy on the order of tens of meters using satellites in the K-band [12].

2.2.2.2 Time of Arrival (TOA). If signals of opportunity that transmit
precise time information and ephemeris data exist, TOA measurements can be used
for absolute navigation via trilateration. If the user has precise a priori knowledge of
the transmit time or transmitter location, that information need not be transmitted.
This closely resembles the GPS system.

2.2.2.3 Time Difference of Arrival (TDOA). If the location of a signal
transmitter is known (or transmitted), TDOA measurements can be used for absolute
navigation via hyperbolic positioning [53]. TDOA measurements are formed by
differencing the arrival time of two signals by a single receiver, or by differencing the
arrival time of a single signal at two separate receivers. Both formulations are useful
when the actual transmit time of the signal is not known. The former case, discussed
in more detail in Section 2.4.1, is useful when the relative difference in transmission
time between the two signals is known (requiring synchronized transmissions). The
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latter case, discussed in more detail in Section 3.2, is useful when the bias in the
measured received time at the two receivers is known or remains constant over some
interval.

2.2.3 Other GPS Alternatives

2.2.3.1 Object Tracking. Algorithms which track objects within succes-
sive images may be used to determine the user’s change in position for incremental
navigation [79]. This method’s appeal is that it does not require object identification
(that is, a physical description of the object) or object location This method does,
however, require object detection within each image and the ability to track objects
within successive images.

2.2.3.2 Satellite Tracking. Similar to that which is done with celestial
bodies, satellites can be tracked using a telescope for absolute navigation [12]. This
method relies upon the ability to locate the satellite optically, and does not require a
satellite transmission. Since satellites are at a lower altitude than celestial bodies, a
satellite-derived position solution can be more accurate than a celestial-body-derived
position solution, assuming the same angular precision is obtained in both cases.

Alternatively, for a given position accuracy requirement, the angular measure-
ment precision requirements for satellite tracking is less stringent than for celestial
tracking. Consequently, the equipment setup precision requirements for satellite an-
gular tracking may be more feasible in the field than those of celestial tracking [12].
As with celestial tracking, satellite tracking requires precise knowledge of the satellite
location.
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2.2.3.3 Gravimetry. High-precision gravimetric instruments can be used
to measure the local gravity. When these measurements are combined with a database
of highly accurate gravitation corrections, an absolute position may be obtained with
an accuracy on the order of 10-15m (at mid-latitude) [12]. A notable disadvantage
of this method compared to GPS is that high-precision gravimetric instruments are
not as easily transported as GPS receivers [12].

2.2.4 Comparison of Navigation Alternatives to GPS
Of the techniques listed, SOP are convenient sources of navigation for the fol-

lowing reasons:

1. SOP are abundant. (To demonstrate this claim, selected SOP examples
are given in Appendix B.) This characteristic is useful for reducing the
position error and ensuring that sufficient signals are available for position
determination.

2. The signal-to-noise ratio is often higher than for signals such as GPS [34].

3. SOP provide the potential for accuracy similar to that of GPS [34].

4. There are no deployment costs or operating expenses related to the signal for
the navigational user. Of course, there would be costs associated with the
equipment used for navigation (such as receivers).

Additionally, using SOP to form TDOA measurements using two separate re-
ceivers (coined “SOP-based TDOA navigation”) is the most appealing alternate to
GPS navigation for the following reasons:
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1. SOP-based TDOA navigation is an absolute navigation technique (as are all
of the techniques except for INS navigation and object tracking).

2. SOP-based TDOA navigation may allow physically smaller user equipment
relative to celestial, object tracking, satellite tracking, gravimetry and SOP
using AOA techniques [12].

3. Forming TDOA measurements may be less complicated than object tracking.

4. SOP-based TDOA navigation does not require knowledge of the transmit time,
unlike exploitation of SOP using TOA measurements.

5. SOP-based TDOA measurements may be formed via the two-receiver method
discussed in Section 2.2.2.3 without requiring synchronized transmitters.

2.3 Previous Exploitations of Signals of Opportunity
This section outlines the most relevant research efforts in exploiting signals of

opportunity (SOP) for navigation. Extensive research is being conducted in the use
of cellular phones for navigation [26]. These efforts are not discussed here, since
all current methods require the receiver to transmit [26] which violates the passive
navigation constraint presented in Section 2.2 (and in Section B.1 of Appendix B).
Standard broadcasting, analog television, and digital television are the only SOP
currently being investigated, and they are discussed in Sections 2.3.1, 2.3.2, and 2.3.3,
respectively. Finally, passive coherent location (PCL), a related application of SOP,
is introduced in Section 2.3.4 and compared to navigation with SOP.

15



2.3.1 Standard Broadcasting
Hall, Counselman, and Misra [34] explored the use of standard broadcasting

signals (discussed in Section B.2.1 of Appendix B on page 174) for a variety of venues:
outdoors in the clear, in woods, and in an urban area (Boston, MA); and inside a
wood-frame house. World-wide availability, long wavelengths suitable for indoor
and underwater navigation, and a simple receiver design were reasons for choosing
standard broadcasting. The authors point out the following characterizations of AM
signals (compared to GPS signals): nearby, ground-based, stationary transmitters;
high SNR; broad frequency range (3:1); long wavelengths; unsynchronized transmitter
oscillators; poor transmitter frequency accuracy and stability; and modulation not
designed for navigating.

The navigation scheme applied was similar to a differential carrier phase GPS
application. The base station was at a known location, while the rover was to be
determined. The amplitude, frequency, and phase of each AM signal at each station
was recorded. Since the phase observable is ambiguous, preliminary studies were
conducted without resolving the ambiguities. In these preliminary studies, the rover
started at a known location and phase increments at each epoch were constructed. An
epoch, or update period, of 5 seconds was chosen based upon the rover dynamics and
oscillator stability. Double-difference phase increments were used in a least-squares
algorithm to solve for the incremental position corrections at each epoch. [34,35]

Realizing the limitations of a system that needs an accurate initial position and
that must maintain lock, an ambiguity resolution approach, called the Ambiguity
Function Method [13,14,35], was incorporated. Position space ambiguity resolution
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was accomplished by maximizing a cost function at each epoch (independent of the
solutions at other epochs). Unlike GPS ambiguities, AM signals’ double-difference
measurement space ambiguities are not integer-valued in general. Because the car-
riers of AM broadcast stations are spaced 10 kHz apart (see Figure 19 on page 175),
the ambiguity function used is periodic with a period T = 1

10 kHz = 100 µsec [34,35].
To avoid this ambiguity, the receiver clock offset was required to be known a priori
within 100 µsec. This was accomplished by transmitting a synchronization pulse at
the start of the experiment. The clock drift was tracked by comparing the relative
received signal frequencies at the base and mobile receivers. The authors mention a
more clever approach might be to cross-correlate the received signals at the base and
mobile receivers. The offset where the peak correlation occurs can be used to obtain
the clock bias. The clock bias was searched within a 100 µsec window of the esti-
mate with step sizes equivalent to ten percent of the shortest wavelength in the AM
band. A brief calculation estimates this value to be 0.6 nsec, resulting in 166, 000
increments in the t direction.

It was demonstrated that the AM-only system has meter-level accuracy outdoors
for baselines up to two kilometers, and its accuracy is only slightly degraded for base-
lines up to 35 kilometers. The authors cite that the chief, and practically the only
significant, cause of error for the AM-only system is close proximity to extended elec-
trical conductors, such as power transmission lines and conductors underground, in
nearby buildings and inside a wood-frame house. Foliage, as in woods, had no signif-
icant effect on the AM system. When an AM navigation receiver and a stand-alone
GPS receiver were driven under foliage, the following results were observed: (1) the
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AM system performance was not degraded, (2) the GPS performance under foliage
was poorer than that of unimpeded GPS performance, and (3) the GPS performance
under foliage was poorer than that of the AM system under foliage.

2.3.2 NTSC Television
Eggert and Raquet [18, 19] evaluated the navigation potential of the National

Television SystemCommittee (NTSC), analog television broadcast signal using TDOA
measurements obtained from NTSC broadcast signals collected in low and high mul-
tipath environments. (Analog television signals are discussed in Section B.2.3 of
Appendix B on page 179.) These measurements were then used to evaluate the
severity and dynamic effects of NTSC broadcast multipath signals. Three data re-
duction algorithms were developed–one that modifies the classical cross-correlation
TDOA approach, and two that difference the signals’ arrival time at each receiver.
Multipath was shown to be the dominant error source; however, errors due to the
particular hardware configuration were also significant.

Simulations were performed using eight television station locations near Dayton,
Ohio. Typical results for overall position error and TDOA measurement error were
found to be 40 meters and 10-40 meters, respectively. Extreme measurement er-
rors from high multipath areas reduced the overall position accuracy to 100 meters.
Additionally, using the same transmitter geometry, simulation results showed that
a TDOA measurement error in the range of 5 to 10 meters was required to provide
position estimates with 10 meter accuracy–the accuracy of readily available single
frequency GPS receivers.
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2.3.3 Digital Television
With a focus on Enhanced 911 [26], Rosum Corporation has been exploring the

exploitation of digital television (DTV) transmissions and cellular communications for
cellular phone location services. It was proposed that the synchronization sequence
{−1,+1,+1,−1} from a local DTV station could be “tracked” using either software or
hardware correlation techniques. (DTV is discussed in Section B.2.4 of Appendix B
on page 185.) Rosum [62, 63] conducted preliminary dilution of precision (DOP)
calculations for current transmitter locations and analyzed tracking the DTV signal
and analyzed the feasibility of navigating with DTV. The authors cite that the
DTV signal can accommodate robust indoor positioning where GPS tends to fail,
since the synchronization signals typically have a power advantage over GPS of more
than 40dB. In addition, the effects of multipath are substantially mitigated since
the signals have a bandwidth of roughly 6 MHz, and considerably superior position
geometry over that which GPS can provide.

2.3.4 Passive Coherent Location
RAdio Detection and Ranging (RADAR) is used to locate a user by energizing the

user with a radio frequency transmitter and analyzing the return emissions received by
a receiver. In monostatic radar, the transmitter and receiver are collocated; whereas
in bistatic radar, the transmitter and receiver are not collocated [33, 81]. Passive
coherent location (PCL) is a form of bistatic radar for which the transmitted signal
is a signal of opportunity. Lockheed Martin developed the Silent Sentry R© system to
use everyday broadcast signals, such as those for television and radio, to illuminate,
detect and track targets [3,33]. Thus, the system is passive, since the receiver does not
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transmit (and the transmitter is considered to be part of the everyday environment).
It does not provide a self-solving navigation solution; however, its use of signals of
opportunity merits discussion.

The effects of various signals of opportunity on PCL have been explored [61].
For example, wideband systems should provide greater accuracy over narrowband
systems [71]. Most PCL literature is based on FM broadcasts and analog TV sig-
nals [10,32,33,39,40,65]. Guner [33] compares the use of different signals of oppor-
tunity. If an AM broadcast carrier, or the audio or video carrier of an analog TV
signal is used, then a narrowband PCL system uses Doppler analysis and Angle of
Arrival (AOA) measurements to estimate the range, position and velocity of a tar-
get. Using FM broadcast signals, time difference of arrival (TDOA) measurements
obtained through matched filtering can achieve a range resolution of 2.0 km [65].
Silent Sentry R©, the first off-the-shelf, commercially available PCL product, uses FM
broadcasts as the SOP [3,33].

2.3.5 Summary
In this section, previous SOP exploitations have been summarized. AM broad-

cast exploitation, analog and digital TV exploitation, and passive coherent location
(PCL) were detailed. AM and analog TV research efforts were direct applications
of passive, self-solving navigation using SOP. (Digital TV and PCL are not passive,
self-solving navigation schemes; however, their use of SOP merited their inclusion.)
Two themes emerge from the SOP navigation efforts:

1. Each exploitation technique is an innovative method to navigate with a specific
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SOP (or specific set of SOP), and

2. The exploited SOP were chosen based upon their coverage areas and signal
structures (from the perspective of preferring either well-understood, simple
signals or signals with synchronization pulses), not the anticipated performance
of the resulting navigation solution.

The first issue will be addressed in Chapter 3 by introducing a navigation process
applicable to a wide range of SOP. The second issue will be detailed more completely
in Chapter 3 and finally resolved with navigation potential theory in Chapter 4. The
following section discusses time difference of arrival measurements to complete the
background needed to use signals of opportunity to form time difference of arrival
measurements (and to use these measurements for navigation).

2.4 Traditional Time Difference of Arrival
This section presents the traditional method used to form time difference of

arrival (TDOA) measurements. Navigation using signals of opportunity (SOP)-
based TDOA measurements will be formalized in the next chapter. While the TDOA
measurements used in subsequent chapters are not found using the traditional form
described herein, this section presents traditional TDOA in Section 2.4.1 to provide
background for the two-receiver method proposed later (in Section 3.2). Section 2.4.2
discusses specific applications of traditional TDOA. Finally, Section 2.4.3 summarizes
the insights that will be useful when the TDOA formulation is altered in Section 3.2
to accommodate SOP.
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2.4.1 Traditional Time Difference of Arrival Development
The traditional time difference of arrival (TDOA) measurement situation is

shown in Figure 1. Shown is exactly one transmitter with N receivers. Each re-
ceiver location is known, while the transmitter location will be determined through
the measurements. The signal s (t) is transmitted at time tt by the transmitter and
is received by the ith receiver at time ti.

Transmitter
Receiver

Figure 1. Traditional TDOA

The time difference of arrival measurement in seconds, δij, is the time difference
of arrival of the signal to the ith receiver compared to the jth receiver, or

δij = ti − tj (2.1)

Converting times into distances by multiplying by the speed of the signal (assumed
to be the speed of light, c), Equation (2.1) becomes

cδij � ∆ij = cti − ctj (2.2)

= (cti − ctt)− (ctj − ctt) (2.3)
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∆ij = di − dj (2.4)

where tt is the unknown time of transmission and di is the distance from the transmit-
ter to the ith tower. Equation (2.4) relates the TDOA measurement in meters to the
distances from the transmitter to the ith and jth towers; some authors appropriately
refer to this as the range-difference measurement [72].

The extension for multiple, synchronized receivers has also been made. For
convenience, let an arbitrary receiver be the reference receiver, denoted with i = 0,
and label the remaining receivers i = 1, · · · , N − 1. Define a local coordinate system
in Earth-centered, Earth-fixed (ECEF) coordinates such that the reference receiver is
located at the origin, x0, the remaining receivers are located at xi, and the transmitter
is located at xt, i.e.,

x0 = 0 xi =




xi
yi
zi



 xt =




xt
yt
zt



 (2.5)

The relative distances from the reference receiver to the ith receiver and from the
transmitter to the ith receiver, denoted with di0 and dit, respectively, may be written
as

di0 = ‖xi − x0‖ = ‖xi‖ =
√

x2i + y2i + z2i (2.6)
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and

dit = ‖xi − xt‖ =
√

(xi − xt)2 + (yi − yt)2 + (zi − zt)2 (2.7)

=
√

x2i + y2i + z2i − 2 (xixt + yiyt + zizt) + x2t + y2t + z2t (2.8)

=
√

‖xi‖2 − 2xTi xt + ‖xt‖2 (2.9)

A TDOA system is comprised of the measurements given in Equation (2.4) for all
of the receivers; that is, for N receivers one can form N − 1 measurements. Without
loss of generality, assume each TDOA measurement is formed using the reference
receiver, i.e., j = 0 in Equation (2.4). Using the relationships in Equations (2.6)
and (2.9), Equation (2.4) becomes

∆i = dit − di0 (2.10)

=
√

‖xi‖2 − 2xTi xt + ‖xt‖2 − ‖xi‖ (2.11)

for i = 1, · · · , N − 1. Notice that each ∆i is measured (with noise), xi is known a
priori, and xt is the desired unknown — resulting in a system of N − 1 equations with
three unknowns (each element in xt). Several exact solutions to this non-linear system
of equations have been presented [4,5,11,49,50,72] in addition to linearized iterative
techniques [27,77], non-iterative approximations [11], and search algorithms [1].

2.4.2 Applications of Traditional TDOA
Traditional TDOA has been used extensively to locate a transmitter through

TDOA measurements from receivers at known locations. Clearly, locating the trans-
mitter is not a passive navigation technique! Nonetheless, the following examples
serve to clarify how traditional TDOA is used.
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2.4.2.1 Search and Rescue Satellites (SARSAT). Search and Rescue
Satellites (SARSAT) employ a TDOA system to locate the distress signal of a ship
or other vehicle equipped with the appropriate transmitter [67]. In an emergency, a
vessel transmits a sinusoidal wave at a known frequency. Satellites receive the signal
and transmit the received time to a ground station. The ground station calculates the
position of the satellites (the receivers in this case) using ephemeris data. Finally, an
algorithm such as one discussed previously in Section 2.4.1 is used to locate the vessel,
or transmitter. Several algorithms have been developed specifically for the “stranded
ship” application by including the additional constraint that the transmitter is on
the surface of the Earth (or mean sea level), modelling the surface of the Earth as
a sphere [37] or an ellipsoid [38]. This additional constraint allows the minimum
number of satellites in view to be reduced from four to three. Other algorithms have
included the use of the Doppler shift of the received signal in a Frequency Difference
of Arrival (FDOA) algorithm. [38]

2.4.2.2 Global Positioning System (GPS) Jammer Location. Mellen
introduced a method to determine the location of a GPS jammer using a time dif-
ference of arrival (TDOA) technique with multiple GPS receivers at known loca-
tions [49, 50]. The transmitter and receivers are all synchronized (except for local
oscillator phase) to GPS-like accuracies. The transmitted signal is colored Gaussian
noise. The TDOA measurements are obtained by cross-correlating the received sig-
nal with a reference signal. The transmitter location is then estimated based on
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the range difference measurements and known sensor locations using a “closed-form
signal source location algorithm”.

2.4.2.3 LORAN. LORAN, previously discussed in Section 2.2.1.2, uses
synchronized transmitters to allow a receiver to determine its location. Because
the receivers are synchronized, the navigation problem and solution are the dual of
traditional TDOA presented in Section 2.4.1. (Note that duality does not hold for
unsynchronized transmitters. The unsynchronized case is discussed in Section 3.2.)

2.4.3 Remarks on Traditional TDOA
With the development of traditional TDOA in place and examples supporting

its use, several observations can be made with the anticipation of applying these
measurements to existing signals.

1. Since tt cancelled when deriving Equation (2.4), the transmit time need not
be known. Furthermore, the transmitter clock does not affect the TDOA
measurement other than for signal integrity. Thus, precise clocks may not be
necessary.

2. Essential to traditional TDOA (so much so, that in most papers its fact is
omitted! [11,20,37,38]) is that all the receivers’ clocks must be synchronized.
This requirement (of synchronized receivers) is not overly restrictive when
designing a TDOA location system; however, as will be shown in Section 3.2,
this constraint must be lifted to apply TDOA measurements to existing non-
synchronized systems.
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3. It is acknowledged that synchronization is not perfect, and the synchronization
error is generally accepted as the error in the TDOA measurement [4].

4. A TDOA measurement may be obtained by cross-correlating the signals
received at two receivers.

2.5 Conclusion
This chapter motivated and provided the background for using SOP-derived

TDOA measurements for navigation. Section 2.2 motivated using SOP-derived
TDOA measurements over the other alternate methods presented. Section 2.3 pre-
sented three current research efforts using SOP for navigation: AM broadcast ex-
ploitation, digital television exploitation, and passive coherent location. Finally,
Section 2.4 presented traditional TDOA with its development and application.

With the insight gained from previous SOP exploitations and traditional TDOA,
the next chapter presents a systematic approach to SOP navigation using TDOA
measurements. Furthermore, this systematic approach may provide the foundations
for expressing the navigation potential of a SOP.
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Chapter 3 - Navigation Using Signals of

Opportunity

3.1 Introduction
This chapter presents the exploitation of signals of opportunity (SOP) for navi-

gation through the three-step process depicted graphically in Figure 2–signal selec-
tion, measurement formation, and measurement application–where a time difference
of arrival (TDOA) measurement is motivated as an appropriate measurement that
can be derived from many SOP. As will be shown, this structured approach provides
(1) portable technology that can be applied to many SOP, (2) performance bounds
that may be used as selection criteria for SOP, and (3) navigation solutions that em-
brace well-known techniques.

Each step shown in Figure 2 is detailed in this chapter. Section 3.2 describes
SOP-based TDOA measurements in detail and provides an optimal method (under
certain conditions) for calculating the TDOA measurement. Section 3.3 derives a
novel adaptation of current Global Positioning System (GPS) position algorithms
which will allow the use of TDOA measurements to determine a position solution.
Section 3.4 applies the results from the previous sections to aid in signal selection.
Finally, Section 3.5 provides a summary.

Measurement
Formation

Signal 
Selection

Measurement
Application

signal
corrupt

measurements
navigation 

solution

Figure 2. SOP Navigation Process



3.2 Measurement Formation
During measurement formation, measurements are formed from the chosen sig-

nals of opportunity (SOP). In this section, time difference of arrival (TDOA) mea-
surements are motivated as an appropriate measurement choice for many applications.
Then, the measurement scenario and governing equations are developed. Third, the
generalized cross correlation method is introduced and applied to SOP-based TDOA
measurements. Finally, a summary is provided.

3.2.1 TDOA Measurement Motivation
SOP-based TDOA measurements found using two receivers to determine the

signal’s TDOA between the two receivers are beneficial for the following reasons.
More explicit justification will be presented throughout this chapter when these topics
arise.

1. SOP-based TDOA navigation applies to a wide range of signals, because, in
general, the a priori knowledge of the signal and noise is not overly restrictive.
Each transmitter location, the reference receiver location, the transmitted
signal power spectral densities, and the noise power spectral densities at each
of the two receivers are required.

2. The SOP transmit time does not need to be known (or determined) to obtain
a navigation solution. This timing leniency enables SOP-based navigation,
since a SOP is transmitted for purposes other than navigation and is normally
controlled by some entity other than the navigation user.

3. TDOA formation does not require synchronous transmitters. This is essential,
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since, in general, each SOP transmitter is not synchronized to any of the other
transmitters. For example, a local radio station’s broadcast is not generally
synchronized to other radio stations.

4. The formation does not require synchronous receivers. While this allows
inexpensive, imprecise receiver clocks, the resulting TDOA measurements
are biased due to unsynchronized receiver clocks. The bias represents
an additional unknown parameter that is found during the measurement
application.

5. The navigation solution using SOP-based TDOA measurements is found
readily with current GPS algorithms; consequently, many aspects of SOP-
based navigation (such as dilution of precision) may already be in place.

3.2.2 TDOA Measurement Development
TDOA measurements are now developed to gain a physical interpretation of

the measurement and to derive a measurement equation. Figure 3 shows a SOP
“travelling” to two, separate receivers. One receiver, called the base station, is a

ith SOP

rover

tr
i

t
b

i

tt i

base station

Figure 3. TDOA Measurement of ith SOP
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reference receiver at a known location while the other receiver, called the rover, is at
an unknown location. The SOP transmitter location is assumed to be known. Fixed
SOP transmitter locations (such as fixed towers) can be determined a priori through
surveying. The location of moving SOP transmitters can be found using “orbital
prediction” for space-based, orbiting transmitters, or determined with additional base
stations in a separate, simultaneous algorithm [50].

The true TDOA, δibr
∣

∣

true, is defined as the difference in received time of the ith

SOP at the base station, denoted by tib, compared to the received time of the ith SOP
at the rover, denoted by tir, i.e.,

δibr
∣

∣

true � tib − tir (3.1)

The TDOA measurement, δ̂ibr, is an estimate of the difference in the received time
of ith SOP at the base station according to the base station clock compared to the
received time of ith SOP at therover according to the rover clock. In other words,
δ̂ibr is an estimate of δibr, and

δibr = tib
∣

∣

b − tir
∣

∣

r (3.2)

where tib|b is the received time of the ith SOP at the base station according to the base
station clock and tir|r is the received time of the ith SOP at the rover according to
the rover clock. The |b and |r denote that the time is measured by the base station
and rover, respectively, and allow for imperfect and unsynchronized base station and
rover clocks. The received time of the ith signal at the base station according to the
base station clock, tib|b, is related to the true received time of the ith signal at the
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base station, tib, by

tib
∣

∣

b = tib + εb
(tib

) (3.3)

where εb (tib) is defined as the base station clock error at the true received time.
Likewise, the received time of the ith signal at the rover according to the rover clock,
tir|r, is related to the true received time of the ith signal at the rover, tir, by

tir
∣

∣

r = tir + εr
(tir

) (3.4)

where εr (tir) is defined as the rover clock error at the true received time. Substituting
Equations (3.3) and (3.4) into Equation (3.2), the TDOA measurement provides an
estimate of

δibr = tib + εb
(tib

)− [tir + εr
(tir

)] (3.5)

δibr = tib − tir + εb
(tib

)− εr
(tir

) (3.6)

Indentifying εb (tib) − εr (tir) as the difference in the clock errors of the base station
and rover, denoted by εibr, and using the definition of δibr

∣

∣

true in Equation (3.1),
Equation (3.6) becomes

δibr = δibr
∣

∣

true + εibr (3.7)

The TDOA measurement, δ̂ibr, provides an estimate of the true TDOA plus the
difference in clock errors. The following subsection details estimating δibr given in
Equation (3.7). Section 3.3 will apply TDOA measurements to solve for the position
of the rover (assuming the base station and SOP transmitter locations are known).
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3.2.3 TDOA Measurement Estimation
There are several methods for estimating δibr given in Equation (3.7). One way

to form a TDOA measurement is to time-tag a specific portion of the incoming signal
at each location and determine the difference in the received times [18]. The ability
to time-tag the same portion of the signal at each receiver precisely may require SOP
that possess distinct time domain features. Another method that can be used for
nearly any SOP is cross-correlating a portion of the incoming signal at each receiver.
In both cases, either a datalink between the rover and reference receivers must be
in place for near-real time operation, or data must be stored for subsequent post
processing.

This section presents an existing, maximum likelihood approach to estimate δibr,
termed the generalized cross correlation (GCC) [44]. The GCC method filters two
incoming signals followed by computing the cross correlation of the filtered signals [44].
This method is appealing, because it (1) achieves the Cramer Rao Lower Bound
(CRLB) and (2) may be applied to a wide range of signals.

The GCC method may be applied when the incoming signals are a signal in noise
and the same signal with a time delay in noise. When the received signals are modeled
with the specific form given in Equations (3.8) and (3.9) and the prefilters are chosen
properly, the time delay estimate that maximizes the GCC is the maximum likelihood
estimate of the time delay [44]. The maximum likelihood estimate is appealing
because it achieves the Cramer Rao Lower Bound (CRLB) [78] and is the optimal
estimate in terms of minimizing the mean-squared error of the estimate relative to
the true value.
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As shown in Figure 4, assume the ith signal received at the base station, xi
b (t),

and the ith signal received at the rover, xir (t), are

xi
b (t) = si (t) + nb (t) (3.8)

xi
r (t) = si

(t+ δibr
)+ nr (t) (3.9)

where δibr is the time difference of arrival of the ith signal at the rover compared to
the base station, si (t) is the ith signal, and nb (t) and nr (t) are the receiver noise
at the base station and rover, respectively. Furthermore, si (t), nb (t), and nr (t)
are modeled as real-valued, pairwise jointly stationary, pairwise jointly wide-sense
ergodic, independent Gaussian stochastic processes, and nb (t) and nr (t) are zero-
mean. Stationarity and ergodicity of stochastic processes are reasonable assumptions
that are required to consider the spectral properties of a stochastic process. Assume
that the following power spectral densities exist and are known a priori:

Gsisi (f) , Gnbnb (f) , Gnrnr (f) (3.10)

(Stochastic processes, stationarity, ergodicity, and the power spectral density func-
tions of stochastic processes are covered in more detail in Appendix D.)

The GCC method prefilters the signals and cross correlates the filtered signals.
In the frequency domain, consider the Fourier transform, denoted by F , of xib (t) and
xir (t) (where ˜ denotes that a quantity is complex-valued):

x̃i
b (f) = F {xi

b (t)
} (3.11)

x̃i
r (f) = F {xi

r (t)
} (3.12)
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Figure 4. TDOA Measurement Depiction with Block Diagram
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Given the prefilters H̃ ir (f) and H̃ i
b (f), the filtered signals can be denoted as

ỹr (f) = H̃ i
r (f) x̃i

r (f) (3.13)

ỹb (f) = H̃ i
b (f) x̃i

b (f) (3.14)

The cross power spectral density of the filter outputs can be written as

G̃i
yryb (f) = ỹr (f) ỹ∗b (f) (3.15)

= H̃ i
r (f)

[

H̃i
b (f)

]∗ x̃i
r (f)

[x̃i
b (f)

]∗ (3.16)

= H̃ i
r (f)

[

H̃i
b (f)

]∗ G̃i
xrxb

(f) (3.17)

where ∗ denotes the complex conjugate and G̃ixrxb
(f) = x̃ir (f) [x̃ib (f)]∗. The GCC of

xir (t) and xib (t) is the inverse Fourier transform, denoted by F−1, of G̃iyryb (f):

Ri
yryb (τ ) = F−1

{

G̃i
yryb (f)

}

(3.18)

Notice when H̃ ir (f) = H̃ ib (f) = 1, the GCC reduces to the normal definition of cross
correlation. Knapp and Carter [44] provide a summary of common prefilter choices.

The maximum likelihood estimate (MLE) of δibr, denoted δ̂ibr, was found by Knapp
and Carter [44]. The following steps produce the same result as finding the MLE
value of δibr:

1. Choose prefilters that satisfy

ψ (f) � H̃i
r (f)

[

H̃ i
b (f)

]∗ (3.19)

= 1
∣

∣

∣G̃xi
bxi

r
(f)

∣

∣

∣







∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2

1−
∣

∣

∣γ̃xi
bxir (f)

∣

∣

∣

2





 (3.20)
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where |·| denotes the absolute value or modulus,
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2 is the coherence
magnitude squared of xib and xir defined as

∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2
�

∣

∣

∣G̃xi
bxi

r
(f)

∣

∣

∣

2

∣

∣

∣G̃xibxib (f) G̃xi
rxi

r (f)
∣

∣

∣

(3.21)

and assuming
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2 �= 1 (3.22)

2. The TDOAMLE, δ̂ibr, is equivalent to the delay value that maximizes the GCC
given in Equation (3.18), or

δ̂ibr = arg
{

maxτ∈R
[Ri

yryb (τ)
]

}

(3.23)

Essentially, when the prefilters satisfy Equation (3.20), δ̂ibr is given by Equa-
tion (3.23). Filtering in Step 1 prepares the input signal for cross correlation in Step 2
by “prewhitening” the signal and placing a weight at each frequency as a function of
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2. This weighting may be interpreted loosely as accentuating frequencies
at which the signal power is higher than the noise power.

The assumption in Equation (3.22) merits some discussion. In general, the term
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2 can take on values

0 ≤
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2 ≤ 1 (3.24)
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The spectral densities in Equation (3.21) can be related to the known spectra given
in Equation (3.10) using Equations (3.8) and (3.9):

G̃xi
bxi

r
(f) = Gsisi (f) e−j2πfδibr (3.25)

Gxi
bxi

b
(f) = Gsisi (f) +Gnbnb (f) (3.26)

Gxirxi
r
(f) = Gsisi (f) +Gnrnr (f) (3.27)

Now, the numerator of Equation (3.21) can be written as
∣

∣

∣G̃xi
bxi

r
(f)

∣

∣

∣

2 = |Gsisi (f)|2 (3.28)

and the denominator of Equation (3.21) can be written (with dependence upon f not
shown) as

∣

∣

∣Gxi
bxi

b
Gxi

rxi
r

∣

∣

∣ = ∣

∣(Gsisi)2 +GnbnbGnrnr +Gsisi (Gnbnb +Gnrnr)
∣

∣ (3.29)

revealing that
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2 �= 1 holds for all f that satisfy

Gsisi (f) �= 0 and Gnbnb (f) �= 0 (3.30)

or

Gsisi (f) �= 0 and Gnrnr (f) �= 0 (3.31)

or

Gnbnb (f) �= 0 and Gnrnr (f) �= 0 (3.32)

Therefore, if noise is present at all frequencies, then the assumption in Equation (3.22)
is satisfied.
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When the terms in Equation (3.10) are known, the filters in Step 1 can be
determined. If the terms in Equation (3.10) are not known completely,

∣

∣

∣γ̃xi
bxir (f)

∣

∣

∣

2

and
∣

∣

∣G̃xi
bxi

r
(f)

∣

∣

∣ can be estimated using spectral analysis techniques [8,9,44,59]. Filters
resulting from estimates of

∣

∣

∣γ̃xi
bxir (f)

∣

∣

∣

2 and
∣

∣

∣G̃xi
bxir (f)

∣

∣

∣ will be approximations to the
optimal filters; therefore, an efficient estimate of δibr cannot be guaranteed under those
conditions.

3.2.4 Summary

In this section, TDOA measurements were motivated as a suitable choice for
SOP, and their formation was detailed. The TDOA estimate, δ̂ibr, was defined as an
estimate of δibr, where δibr was found in Equation (3.6) as

δibr = tib − tir + εb
(tib

)− εr
(tir

) (3.33)

Furthermore, the GCC method for TDOA was introduced, and the MLE of δibr was
given in Equation (3.23) as

δ̂ibr = arg
{

maxτ
[Ri

yryb (τ)
]

}

(3.34)

The procedure can be summarized as follows: Known characteristics of the
selected SOP and the receiver noises are used to form the prefilters H̃ ir (f) and H̃ ib (f).
The GCC is found using filtered versions of the input signals. Finally, the delay value
that maximizes the GCC is the TDOA MLE. The following section will now apply
these results to determine the location of the unknown receiver.
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3.3 Measurement Application
This section introduces a novel approach to apply existing Global Positioning Sys-

tem (GPS) algorithms to SOP-based TDOA measurements to determine an unknown
receiver’s position. The SOP-based TDOA measurements may be found through the
results of the previous section or using some other method. The SOP navigation sce-
nario is described detailing appropriate assumptions followed by the transformation
of the SOP-based TDOA measurements into “GPS-like” pseudorange measurements.

Figure 5 shows the scenario considered (for which each tower transmission is
shown in Figure 3). Assume the location of the ith SOP transmitter for i = 1, 2, · · · , N
at time t is known and defined as xi (t). The equipment needed consists of two
stationary or moving receivers: a base station at a known location, xb (t), and a
rover unit at the location to be determined, xr (t). The known locations xi (t) and
xb (t) may be at a fixed, surveyed site or determined using an available navigation
system such as GPS.

The TDOA estimate of the ith signal to the base station relative to the receiver,
δ̂ibr, was defined as an estimate of δibr, where δibr was given in Equation (3.6). Recall
that no clock synchronization assumptions are made. A situation may nevertheless
occur in which transmitters are synchronized; however, in order to encompass a wider
range of SOP, this scenario does not take advantage of this additional constraint.
Converting travel times into distances by multiplying by the signal’s propagation
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Figure 5. TDOA Transmitter and Receiver Scenario
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speed, c, Equation (3.6) becomes

∆i
br � cδibr = ctib − ctir + cεb

(tib
)− cεr

(tir
)

= (ctib − ctit
)− (ctir − ctit

)+ [cεb
(tib

)− cεr
(tir

)]

= dib − dir +
[cεb

(tib
)− cεr

(tir
)] (3.35)

where tit is the unknown transmit time of the ith SOP, cδibr � ∆ibr, and dib and dir
are the distances from the ith SOP transmitter to the base station and rover, respec-
tively. Figure 6 shows the relationship of and dib, dir and ∆ibr. Using this insight,
Equation (3.35) is rearranged as

dir −
[cεb

(tib
)− cεr

(tir
)] = dib −∆i

br (3.36)

Equation (3.36) closely resembles the form of a GPS pseudorange equation [53], in
which

1. dib −∆ibr resembles GPS pseudorange to be estimated (in distance),

2. [cεb (tib)− cεr (tir)] resembles an unknown clock bias (although it is actually the
unknown difference in the clock errors expressed in units of distance of the
base station and the rover), and

3. dir is true range from the rover to the ith SOP.

If the difference in the clock errors could be formed such that they do not vary over
the measurements taken, then GPS algorithms may be employed to determine xr (t)
(and the difference in clock errors of the base station and rover) from estimates of
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[dib −∆ibr]. (In the TDOA case, ∆ibr is actually estimated as cδ̂ibr. An estimate of
[dib −∆ibr] may be formed as

[

dib − cδ̂ibr
]

.)
The conditions which permit the difference in clock errors to be constant over

the measurements taken are now considered. Using N SOP transmitters, N mea-
surements can be taken. For three dimensional positioning, N ≥ 4 is required. In
general, each of the terms in Equation (3.36) with the superscript i vary as the SOP
transmitter varies. Since TDOA is formed as the difference in received times at two
receivers, without loss of generality, the user may select the time that the ith SOP is
received at the rover, tir, be constant over i. This may be accomplished using multiple
channels, in which each of the N SOP are received simultaneously at the time, tr, i.e.,

tr � t1r = t2r = · · · = tNr

It follows that the rover clock error remains the same for each SOP and can be denoted
as δr (tr).

The time at which the ith SOP is received at the base station, tib, may take on
values between tr − B

c and tr + B
c , or

tib ∈
[

tr − B
c , tr +

B
c
]

where B is the distance between the base station and the rover and c is the speed of
propagation. If B is constrained such that the base station clock drift is sufficiently
small over the possible range of base station received times, then

δb (t) ≈ k ∀t ∈
[

tr − B
c , tr +

B
c
]

(3.37)
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where k is a constant. Furthermore, Equation (3.37) holds for each SOP, so that

δb
(t1b

) ≈ δb
(t2b

) ≈ · · · ≈ δb
(tNb

) � δb (tb)

Finally, replacing δr (tir) with δr (tr) and δb (tib) with δb (tb), Equation (3.36) becomes

dir − [cδb (tb)− cδr (tr)] = dib −∆i
br (3.38)

Equation (3.38) parallels the GPS pseudorange equation, in which dib−∆ibr is the
ith pseudorange measurement, dir is range from the rover to the ith GPS transmitter
(or satellite), and [cδb (tb)− cδr (tr)] is a bias term constant over all N measurements.
The difference is that, in conventional GPS, the bias term represents the user clock
error, whereas for SOP TDOA measurements, the bias term represents the difference
in the clock errors of the base station and rover. Standard GPS algorithms, such
as one presented by Misra and Enge [53], or closed-form solutions such as in [54],
can be used to solve for the rover position and the difference in clock errors of the
base station clock and rover clock. Note that the algorithm using SOP TDOA
measurements cannot be used to estimate true time, since the bias found represents
a difference in clock errors and not a single clock error compared to the true time.
This new approach allows SOP-based navigation dilution of precision considerations
to be addressed in a manner consistent with GPS techniques such as those found in
[53,58].

3.4 Signal Selection
Signal selection is deciding which signals of opportunity (SOP) to use for navi-

gation. From a Bayesian viewpoint, the best performance is achieved when all SOP
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are used. Naturally, signal selection assumes there are more SOP available than the
user has resources to exploit. Considering radio, television, cellular phone, and other
telecommunication signals emitted both terrestially and celestially, signal selection
is confronted quickly! (See Appendix B for specific examples.) Furthermore, this
task is critical, because the chosen SOP’s characteristics will affect navigation per-
formance. Current SOP exploitations such as AM radio have been chosen, in part,
because of their large coverage areas and well-understood signal structures [34]. A
more appropriate decision tool may be the ability to determine navigation parameters
of interest using a given signal, called the navigation potential of a signal.

In Section 3.2 and under restricted received signal models, the maximum likeli-
hood estimate for a SOP-based time difference of arrival (TDOA) measurement was
found. In Section 3.3, a navigation algorithm employed SOP-based TDOA measure-
ments to determine the unknown, rover position. The quality of the TDOA estimates
may be quantified based upon the lowest variance achievable by any unbiased esti-
mator, or the Cramer Rao Lower Bound (CRLB). Knapp and Carter show that the
variance of δ̂ibr, denoted with var

{

δ̂ibr
}

, must satisfy [44]

var
{

δ̂ibr
}

≥










T
∫ ∞

−∞

(2πf)2
∣

∣

∣γ̃xibxi
r
(f)

∣

∣

∣

2

1−
∣

∣

∣γ̃xi
bxi

r
(f)

∣

∣

∣

2df










−1

(3.39)

where T is the finite-timelength observation interval of xib (t) and xir (t) used to com-
pute the Fourier transform of xib (t) and xir (t). This expression assumes that the
observation interval, T , is large compared to the delay δibr plus the correlation time
of the signal [44].
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Equation (3.39) is insightful; for example, as the observation time (T ) increases
or as the coherence magnitude squared approaches unity, the CRLB decreases. Fur-
thermore, when navigation is accomplished consistent with the preceding sections,
the TDOA estimate given in Equation (3.23) is efficient [44]. That is, the variance
of the estimate achieves the CRLB.

The CRLB given in Equation (3.39) is applicable only when the signals are
appropriately represented by the models given in Equations (3.8) and (3.9). For
example, a major source of error for SOP is multipath [18, 19]; Equations (3.8) and
(3.9) do not account for multipath.

With the insight gained through this systematic navigation process, Chapter 4
will develop navigation potential theory. Navigation potential theory covers a large
class of problems, one of which is the simplified model presented here.

3.5 Summary
The SOP-based TDOA navigation process shown in Figure 2 is summarized as:

1. Signal Selection — Characterize each candidate SOP’s spectra defined in
Equation (3.10) and its transmitter location (or location path). Assuming
the signals are appropriately modeled by Equations (3.8) and (3.9), calculate
(using Equation (3.39)) the minimum variance achievable by any unbiased
TDOA estimate. Select SOP based upon this performance bound and
geometry effects. Recall, well-known GPS techniques such as those described
in [53] can be used to characterize the geometry effects.

2. Measurement Formation — Compute (or approximate) optimal filters that
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satisfy Equation (3.20). Use the Generalized Cross Correlation method given
in Equation (3.23) to compute δ̂ibr.

3. Measurement Application —Use the measurement∆ibr = cδ̂ibr in Equation (3.38)
to form a GPS-like pseudorange measurement. Combine each measurement
at a given time to compute the location of an unknown receiver using well-
known GPS algorithms [53,54,58].

This systematic navigation method is an alternative, and/or augmentation, to
current navigation methods such as GPS and applies to nearly all SOP using time
difference of arrival (TDOA) measurements obtained from a generalized cross correla-
tion. This approach enables positioning systems in which none of the transmitters or
receivers require precise clocks, nor do they need to be synchronized. Only the SOP
and noise spectra, SOP transmitters’ location, and base station location is needed.
Furthermore, a decision tool for proper selection of SOP may be the CRLB. Finally,
SOP TDOA measurements can be processed with existing GPS algorithms to solve
for user positions and the rover clock error relative to the base station clock error.

This navigation process may suffice in many cases. Methods other than GCC
may be used to form the TDOA estimate. The GPS-like navigation algorithm given
in this chapter applies regardless of which SOP is selected or how the TDOA mea-
surement is obtained, although a more clever technique may be appropriate for a par-
ticular class of SOP. The process presented here provides insight into the navigation
potential theory developed in the following chapter.
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Chapter 4 - Navigation Potential

4.1 Introduction
In this chapter, the concept of navigation potential (NP) is presented. The

overall approach in developing the navigation potential of a signal is to describe the
received signal’s relationship to the navigation parameter(s) of interest, followed by
quantifying the ability to estimate the navigation parameter(s) based upon the re-
ceived signal. As motivated in Chapter 3, time difference of arrival (TDOA) mea-
surements are useful particularly when the received signal is based upon a signal of
opportunity (SOP), since the transmit time is not needed to determine a position so-
lution. It is shown that the ability to determine the TDOA of a SOP received at two
receivers may be characterized through the inverse of the TDOA estimate’s Cramer
Rao Lower Bound given the received signals. Assumptions about the received signals
and their relationship to the TDOA measurement are made in succession to simplify
the analysis and afford more practical NP forms.

To aid in following the NP development, Figure 7(b) provides the “Table of
Contents” for this chapter while (a) depicts graphically how the assumptions made
therein fit together. The outermost gray area, “Box I”, corresponds to the measure-
ment model and NP described in Section 4.2 and is the most general measurement
form considered in this document. The received signals, xi, are assumed to be the
result of a stochastic mapping, gi (t, $; s, ni, τ i). The first two arguments capture the
stochastic nature of gi, while the remaining arguments indicate that gi is parameter-
ized by the transmitted signal, s, noise, ni, and time delay, τ i. The general nature of
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this model encompasses a wide range of problems; however, considerably more insight
into NP is gained when the model is constrained. Section 4.3 (Box II) presents a
multipath model by constraining gi, s, and ni; briefly, gi maps the transmitted signal
and noise into the received signal as the direct signal in noise in addition to multiple
delayed and attenuated versions of the direct signal. Section 4.4 (Box III) constrains
the multipath model such that the transmitted signal, measurement noise, and re-
ceived signals are jointly Gaussian. (Figure 7 contains considerable “blank space.”
Figure 9 in Chapter 5 fills this space with diagrams representing example problems.
The spacing is maintained in Figures 7 and 9 for a consistent appearance.)

4.2 TDOA Navigation Potential
This section details navigation potential (NP) as it applies to the very general

problem of determining the time difference of arrival (TDOA) of a signal received
at two separate locations. Measurements constructed from a single signal received
at two separate locations covers a wide range of navigation problems. As stated
in Chapter 3, this form is appealing for signals of opportunity, because it eliminates
the need to know the transmit time of the signal. Furthermore, Chapter 5 shows
that this form can be equated to receiving the signal at a single receiver and using
a receiver-generated replica signal as the second received signal. The remainder of
this section presents NP in its most general form by describing the received signals,
the navigation parameters of interest, and the ability to determine the navigation
parameters from the received signals.
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4.2.1 Signal Model

The most general form of the signal received at the ith receiver, xi (·, ·), is the
stochastic process defined as

xi (·, ·) � gi [·, ·; s (·, ·) , ni (·, ·) , τ i (·)] for i = 1, 2 (4.1)

where xi (·, ·), s (·, ·), and ni (·, ·) are scalar-valued stochastic processes representing
the received signal at the ith receiver, the transmitted SOP, the noise at the ith

receiver, respectively. Each of these stochastic processes is defined on R1 ×Ξ, where
the first argument denotes “time” with t ∈ R1 and the second argument denotes
samples from a sample space3 with ξ ∈ Ξ. The single argument on τ i (·) denotes
time with t ∈ R1. The range of xi (·, ·), s (·, ·), and ni (·, ·) is Xxi ⊆ R1, Xs ⊆ R1,
and Xni ⊆ R1, respectively. As an example4, consider s (·, ·) when confined in its
arguments:

• For some fixed t, s (t, ·) is a random variable (and is a function of ξ).

• For some fixed ξ, each s (·, ξ) is a sample from the stochastic process and is a
function of t.

• For some fixed t and ξ, each s (t, ξ) is a point in Xs ⊆ R1; it can be viewed as
a realization of the random variable s (t, ·) or the specific value of the sample
s (·, ξ) at a specific time t.

3Some authors use ω ∈ Ω rather than ξ ∈ Ξ; however, the latter notation avoids confusion with ω � 2πf
used in Fourier analysis.

4Section D.2 in Appendix D provides a more complete description of stochastic processes and their
characteristics.
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The time delay incurred by the transmitted SOP to travel to the ith receiver, τ i (·),
is a function of time, t, with t ∈ R1. Finally, the mapping, gi, is itself a mapping of
R1 × Ξ into Xxi ⊆ R1 (parameterized by s (·, ·), ni (·, ·), and τ i (·)).

The aim of NP theory is to quantify the ability to estimate the navigation para-
meters of interest given the received signal x (·, ·) defined as

x (·, ·) � [ x1 (·, ·)x2 (·, ·)
]

=
[ g1 [·, ·; s (·, ·) , n1 (·, ·) , τ 1 (·)]
g2 [·, ·; s (·, ·) , n2 (·, ·) , τ 2 (·)]

]

(4.2)

The following discussion clarifies which parameters are “of interest”.

4.2.2 Parameters of Interest

The true TDOA of the signal at the first receiver relative to the second receiver,
or τ∆ (t), is defined as

τ∆ (t) � τ 1 (t)− τ 2 (t) (4.3)

where τ 1 (t) and τ 2 (t) are the arrival times (at time t) of the signal at the first and
second receiver, respectively. An estimate of the true TDOA, τ̂∆ (t), called the
TDOA estimate, may be used to solve for an unknown receiver position as detailed
in Chapter 3. Ideally, the true TDOA is the navigation parameter of interest for
which an estimate is sought, because this parameter is used in the TDOA navigation
scheme detailed in Chapter 3. (Other parameters of interest may be considered.
An example parameter of interest not used here is the received signal’s amplitude.)
When the parameter is confined to TDOA, the expressions for NP characterize the
ability to estimate the TDOA given x (·, ·).
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In general, τ∆ (t) cannot be estimated directly, so both τ 1 (t) and τ 2 (t) must be
estimated. This can be represented as estimating the vector

θ (t) �
[ τ 1 (t)
τ 2 (t)

]

(4.4)

Once an estimate of θ (t) is found, denoted as θ̂ (t), τ̂∆ (t) may be found as

τ̂∆ (t) = [ 1 −1 ]
[ τ̂ 1 (t)
τ̂ 2 (t)

]

(4.5)

� h
[

θ̂ (t)
]

(4.6)

where h is the transformation (which is linear and time-invariant here) used to go
from θ̂ (t) to τ̂∆ (t).

Thus, while τ∆ (t) is the navigation parameter of interest, the need may arise
to estimate a vector of parameters, θ (t), where there exists some transformation, h,
such that h maps θ̂ (t) to τ̂∆ (t). An expression for NP should permit this subtle
distinction. The following section introduces performance bounds for the estimates
of τ∆ (t) and θ (t) as the precursor to a formal definition for NP.

4.2.3 Cramer Rao Lower Bound

It is desired to quantify the performance of τ̂∆ (t). One commonly used indicator
of an estimator’s performance is the mean-squared error (MSE) [15,43,68,78], or

E {[τ∆ − E (τ∆)]2}

where E (·) is an estimator and time dependence is not shown. The E (·) operator
may depend upon a time history of measurements. One might consider quantifying
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NP through the inverse of the minimum MSE achievable by any estimator of τ∆:

NP (x) �
[

min
E

(E {[τ∆ − E (τ∆)]2})
]−1 (4.7)

where the expectation is taken over the probability density function of x and the
minimum is taken over all estimators, {E (·)}. The optimal estimator (in terms of
minimizing the MSE), defined as EMMSE (·), follows for τ∆ as

EMMSE (τ∆) = arg
{

min
E

(E {[τ∆ − E (τ∆)]2})
}

(4.8)

In fact, it can be shown that EMMSE (·) is, in general, the conditional expectation of
the quantity of interest, conditioned on the measurements that have been observed.

Defining

τ̂∆ � E (τ∆) (4.9)

µτ̂∆ � E {τ̂∆} (4.10)

it follows that

E {[τ∆ − E (τ∆)]2} = E
{

[(τ∆ − µτ̂∆
)+ (µτ̂∆ − τ̂∆

)]2} (4.11)

and, upon expanding,

E {[τ∆ − E (τ∆)]2} = E
{

(τ∆ − µτ̂∆
)2}+ E

{

(µτ̂∆ − τ̂∆
)2}+

+2E {(τ∆ − µτ̂∆
) (µτ̂∆ − τ̂∆

)} (4.12)

Defining

E
{

(µτ̂∆ − τ̂∆
)2} � (στ̂∆)2 (4.13)
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and noting that τ∆ and µτ̂∆ are not random, Equation (4.12) becomes

E {[τ∆ − E (τ∆)]2} = (τ∆ − µτ̂∆
)2+(στ̂∆)2+

[2 (τ∆ − µτ̂∆
) (µτ̂∆ − E {τ̂∆})] (4.14)

But, from Equation (4.10),

µτ̂∆ −E {τ̂∆} = 0 (4.15)

so

E {[τ∆ − E (τ∆)]2} = (τ∆ − µτ̂∆
)2 + (στ̂∆)2 (4.16)

When µτ̂∆ = τ∆, the MSE becomes

E {[τ∆ − E (τ∆)]2} = (στ̂∆)2 (4.17)

An estimator of τ∆, denoted by E (τ∆) = τ̂∆, such that E {τ̂∆} = τ∆ is termed an
unbiased estimator [43,78], and the MSE of such an estimator is the variance of the
estimator itself, or (στ̂∆)2. The Cramer Rao Lower Bound places a lower limit on
the variance of any unbiased estimator of τ∆ as defined in the following theorem.

Theorem 1 (Cramer Rao Lower Bound (CRLB)) [43]

Let the measurements x be given, where the probability density function of x,
f (x; θ), is known and is a function of the parameter vector to be estimated, θ. Fur-
thermore, it is assumed f (x;θ) satisfies the regularity condition

E
{∂ ln [f (x;θ)]

∂θ
}

= 0T (4.18)
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Then, the variance of any unbiased estimate of θi, defined as Cθ̂i, must satisfy
the CRLB given as

Cθ̂i ≥ [I−1 (θ)]ii (4.19)

or, in matrix form,

Cθ̂ − I−1 (θ) ≥ 0 (4.20)

where ≥ 0 is interpreted as meaning the matrix must be positive semidefinite and
I (θ) is the Fisher Information Matrix (FIM) defined component-wise as

[I (θ)]ij � E
{∂ ln [f (x; θ)]

∂θi
∂ ln [f (x;θ)]

∂θj
}

(4.21)

Furthermore, it can be shown that [46]

[I (θ)]ij = −E{∂2 ln [f (x; θ)]∂θi∂θj
}

(4.22)

Proof: See [43]. �

Finally, consider the case in which τ∆ cannot be estimated directly; rather, θ
is estimated where τ∆ = h (θ) for some given mapping h. The following corollary
describes the FIM for transformations of variables.

Corollary 2 (CRLB for Transformations of Variables) [43]

The variance of any unbiased estimator of α = h (θ), defined as Cα̂, must
satisfy

Cα̂ − ∂h (θ)
∂θ I−1 (θ)

[∂h (θ)
∂θ

]T ≥ 0 (4.23)
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where ∂h(θ)
∂θ is the Jacobian matrix defined component-wise as

[∂h (θ)
∂θ

]

ij
= ∂ [h (θ)]i

∂θj (4.24)

Proof: See [43]. �

4.2.4 NP Definition

Using the notation from the previous subsection, NP is defined formally as

NP (x) �
(

∂h(θ)
∂θ I−1 (θ)

[∂h(θ)
∂θ
]T)−1

(4.25)

where θ is the vector of parameters estimated, I (θ) is the FIM of θ, and h maps θ
to τ∆. Notice that NP (x) is a scalar-valued function and accommodates estimating
a vector of parameters for which there exists a mapping of the estimated parameters
to the TDOA. Furthermore, Equation (4.25) may be written as

NP (x) � (Cτ̂∆)−1 (4.26)

where Cτ̂∆ is the CRLB on any unbiased estimate of τ∆. NP is the inverse of the
CRLB for τ̂∆, so that the navigation potential increases as the expected variance on
an unbiased estimate of τ∆ decreases.

The CRLB is a suitable foundation for defining NP, since it represents the mini-
mum MSE achievable by any unbiased estimator of the navigation parameters of in-
terest given the probability density function of the received signal. Since this bound
holds for any unbiased estimator, NP (x) does not depend upon the estimator that
will be used to estimate τ∆. Rather, the second partial in Equation (4.22) captures
the curvature of the natural logarithm of the probability density function of x with
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respect to the navigation parameters. Thus, the intrinsic ability to navigate from a
received signal lies in the received signal’s susceptibility to change in the navigation
parameters. Strong curvature of the density function as a function of τ∆ provides
more navigation potential, or provides the potential for better estimation of τ∆, than
does a density function that is flatter as a function of τ∆. For example, suppose
the receiver moves in position (and, hence, the navigation parameters have changed).
NP addresses the question, “How does the received signal change when the naviga-
tion parameter changes?” Heuristically, a signal with relatively small changes due to
this position change would have less NP than signals which exhibit large changes due
to the same position change.

Equation (4.25) defines the NP of x in terms the element of the inverse of the
FIM that corresponds to τ∆. When τ∆ alone is estimated, Equation (4.25) becomes

NP (x) = I (τ̂∆) (4.27)

which is just the inverse of the CRLB for any unbiased estimate of τ∆. When two
parameters are estimated, the inverse of the FIM for θ2×1 is

I−1 (θ) = 1|I (θ)|
[ [I (θ)]22 − [I (θ)]12− [I (θ)]12 [I (θ)]11

]

(4.28)

where

|I (θ)| = [I (θ)]11 [I (θ)]22 − ([I (θ)]12)2 (4.29)

and the subscript [ ]ij denotes “the i-j component of” the matrix. (Note that the
symmetry of the FIM has been exploited.)
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When τ∆ is estimated simultaneously with another parameter, e.g.,

θ �
[ τ∆

ν
]

(4.30)

the TDOA estimate is given through

τ̂∆ = [ 1 0 ] θ̂ (4.31)

so that
∂h (θ)
∂θ = [ 1 0 ] (4.32)

Substituting Equations (4.28), (4.29), and (4.32) into Equation (4.25), the NP of x
when another parameter, ν, is estimated in addition to τ∆ is

NP (x) = [I (θ)]τ∆τ∆ −
(

[I (θ)]τ∆ν
)2

[I (θ)]νν (4.33)

Notice that estimating another parameter reduces the NP when the likelihood func-
tion is not separable with respect to the two parameters (indicated by I (θ)τ∆ν �= 0)
and the nuisance parameter is not completely unknown (indicated by I (θ)νν �= 0).

When τ 1 and τ 2 are estimated, e.g.,

θ �
[ τ 1
τ 2
]

(4.34)

the TDOA estimate is found as

τ̂∆ � τ̂ 1 − τ̂ 2 = [ 1 −1 ] θ̂ (4.35)

and
∂h (θ)
∂θ = [ 1 −1 ] (4.36)
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Substituting Equations (4.28), (4.29), and (4.36) into Equation (4.25), the NP of x
when τ 1 and τ 2 are estimated is

NP (x) = (Cτ∆)−1 = [I (θ)]τ1τ1 [I (θ)]τ2τ2 − ([I (θ)]τ1τ2)2
[I (θ)]τ1τ1 + [I (θ)]τ2τ2 + 2 [I (θ)]τ1τ2

(4.37)

Notice that NP (x) decreases as the “cross information” of τ 1 and τ 2 represented in
I (θ)τ1τ2 increases.

4.2.5 NP Usefulness

The CRLB-based definition of NP (x) given in Equation (4.25) is most appro-
priate when there exists an unbiased estimator that achieves this bound. Such an
estimator is termed efficient; its existence is outlined in the following corollary.

Corollary 3 (Existence of an Efficient Estimate) [43]

An unbiased, efficient estimator of θ exists if and only if there exists a function
g such that

∂
∂θ ln f (x; θ) = I (θ) [g (x)− θ] (4.38)

If it exists, θ̂ = g (x) is an unbiased, efficient estimator of θ and its covariance is
I−1 (θ).
Proof: See [43]. �

A common parameter estimation technique is the maximum likelihood estimate
(MLE) approach. (Maybeck [48] provides a good discussion of the MLE approach.)
The MLE is the value of θ that maximizes f (x;θ) for x fixed; it is found as θ̂ such
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that [43]
∂
∂θ ln f (x; θ)|θ=θ̂ = 0T and ∂2

(∂θ)2 ln f (x; θ)|θ=θ̂ ≤ 0 (4.39)

If an efficient estimate exists, then the maximum likelihood estimate (MLE) approach
will produce it [43].

When the signal model in Equation (4.2) provides a good indication of the real-
world received model and an efficient estimate exists, the expression for NP (x) given
in Equation (4.25) provides a good indication of navigation performance achievable
with x. In other words, NP is a useful indicator of realizable performance.

When an efficient estimator does not exist, NP (x) may be an overly optimistic
indicator of NP ; that is, the realizable performance may be worse than what is pre-
dicted from NP (x). Realizable lower bounds (higher than the CRLB) may be useful
in defining NP (x) when an efficient estimate does not exist; however, many of these
bounds are specific to particular classes of signals or require low signal-to-noise ra-
tios [80,83,84]. The CRLB definition of NP (x) will be used in this research, because
it applies for any x (even though it may be optimistic in some cases).

4.2.6 Evaluating NP (x) in General

Evaluating the expression for NP given in Equation (4.25) requires knowledge
of f (x; θ) to evaluate the terms of the FIM given in Equation (4.22). If f (x; θ) is
known or can be found, then NP (x) is completely defined.

In some cases, f (x; θ) may be found experimentally without knowledge of the
underlying mappings g1 and g2. For example, assuming x (·, ·) is ergodic, one ap-
proach may be to find the mean and moments of x (·, ·) using a time history of mea-

62



surements. Under the assumption of ergodicity, the mean of x (·, ·), denoted by µx,
is constant over t and given by

µx = E {x (t, ·)}
While this method may be suitable for specific cases, it would be difficult to extend
this to a general class of problems.

Section 4.3 will make reasonable assumptions about the mappings g1 and g2 to
write f (x; θ) in terms of the mapping, signal, and noise probability density functions.
The resulting NP expressions are found in more physically motivated terms than that
which uses characteristics of the received signal directly. (Figure 7 in Section 4.1,
page 50, shows graphically the model assumptions in this section and the sections
that follow.)

4.3 Multipath Form of g1 and g2
In this section, a multipath model for g1 and g2 that captures a wide range of

received signals is motivated. Without modeling g1 and g2, the designer may deter-
mine fx (·) experimentally (as discussed previously) or model it directly. This sec-
tion confines the mappings g1 and g2 to specific forms, allowing fx (·) to be expressed
in terms of physically meaningful probability density functions. Modeling fx (·) in
terms of these density functions may be more readily accomplished than modeling
fx (·) directly.

Prior to this research, only relatively simple models (such as modeling the re-
ceived signal as the transmitted signal in noise) have been used to characterize navi-
gation potential (NP). Furthermore, multipath models have been proposed in order
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to reduce the effects of multipath upon the navigation solution (termed multipath
mitigation) [2,58]. This research does not present a multipath mitigation technique;
rather, it quantifies the ability to estimate the parameters of interest when the re-
ceived signal includes the direct signal and multipath signals in noise. Furthermore,
the form of the resulting NP (x) may give insight into design considerations, multi-
path effects, or SOP selection.

To accomplish this task, Section 4.3.1 develops the multipath model. Sec-
tion 4.3.2 translates the problem into the frequency domain. Section 4.3.3 relates
fx (·) to the transmitted signal and noise when a multipath model is used. Finally,
Section 4.3.4 derives an expression for NP (x) under the multipath model constraint.
(Figure 7 on page 50 shows graphically the model assumptions in this section as
Box II.) Appendix D provides a more complete discussion on stochastic processes
and their Fourier transforms.

4.3.1 Signal Model for xmp

The general form of the measurement random process, x (·, ·), was given in Equa-
tion (4.2) and is restated here as

x (·, ·) � [ x1 (·, ·)x2 (·, ·)
]

=
[ g1 [·, ·; s (·, ·) , n1 (·, ·) , τ 1 (·)]
g2 [·, ·; s (·, ·) , n2 (·, ·) , τ 2 (·)]

]

(4.2)

where the arguments (·, ·) denote time, t, where t ∈ R1, and some point in the sample
space, ξ, where ξ ∈ Ξ, respectively; the argument (·) denotes time, t, where t ∈ R1.
Furthermore, s models the received signal, ni models the noise at the ith receiver, τ i
is the time delay incurred by the transmitted signal to travel to the ith receiver, and
gi is a mapping for the received signal at the ith receiver.
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The remainder of this subsection will introduce specific mappings, g1 and g2,
that represent a received signal with multipath effects. The assumptions upon and
the relationships between the transmitted signal, measurement noise, time delays,
and mappings will be presented. Refer to Section D.2 in Appendix D for a more
complete discussion on stochastic processes.

Consider when s, n1, n2, τ 1 and τ 2 are mapped into x1 and x2 for all t as [58]

x1mp (t, ·) = s (t− τ 1 (t) , ·) + n1 (t, ·) +
+

N1
∑

l=1
αl (t, ·) s [t− τ 1 (t)− δl (t, ·) , ·] (4.40)

x2mp (t, ·) = s (t− τ 2 (t) , ·) + n2 (t, ·) +
+

N2
∑

l=1
βl (t, ·) s [t− τ 2 (t)− εl (t, ·) , ·] (4.41)

This mapping represents the received signal as the transmitted signal in noise plus
multiple delayed and attenuated replicas of the transmitted signal.

The received signals, x1mp (·, ·) and x2mp (·, ·), are stochastic processes with a
probability density function at time t denoted by fx1mp(t,·) (ξ) and fx2mp(t,·) (ξ), respec-
tively. The signal, s (·, ·), is modeled as a zero-mean, ergodic, wide-sense stationary,
stochastic process. The joint probability density function, fs(t1,·),...,s(tN ,·) (ξ1, . . . , ξN),
is assumed to exist and be known for all time sequences {t1, . . . , tN}. The noise sto-
chastic processes, n1 (·, ·) and n2 (·, ·), represent additive noise and have probability
density functions at time t denoted by fn1(t,·) (ξ) and fn2(t,·) (ξ), respectively. τ 1 (t)
and τ 2 (t) represent the delay at time t incurred by the transmitted signal resulting
from traveling from the transmitter to the receivers. In general, this is a function
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of the distance between the transmitter and receiver at time t. Given the signal
propagation speed c, the ith delay is

τ i (t) = di (t)
c

where di (t) is the distance from the transmitter to the ith receiver at time t.
Within the summation, each term represents a delayed and attenuated replica

of the transmitted signal, and the number of replica signals, N1 and N2, are assumed
to be known integers. The attenuation stochastic processes, αl (·, ·) and βm (·, ·),
represent the scaling incurred by the lth replica of the s in x1 and themth replica of s in
x2, respectively. The joint probability density functions, fαl(t1,·),...,αl(tN ,·) (ξ1, . . . , ξN)
and fβm(t1,·),...,βm(tN ,·) (ξ1, . . . , ξN), are assumed to exist and be known for all time
sequences {t1, . . . , tN}, for all l ∈ {1, 2, · · · , N1}, and for all m ∈ {1, 2, · · · , N2}. The
delay stochastic processes, δl (·, ·) and εm (·, ·), represent the delay, in addition to τ 1,
incurred by the lth replica of the s in x1 and the delay, in addition to τ 2, incurred
by the mth replica of s in x2, respectively. The joint probability density functions,
fδl(t1,·),...,δl(tN ,·) (ξ1, . . . , ξN) and fεm(t1,·),...,εm(tN ,·) (ξ1, . . . , ξN), are assumed to exist and
be known for all time sequences {t1, . . . , tN}, for all l ∈ {1, 2, · · · , N1}, and for all
m ∈ {1, 2, · · · , N2}.

The relationships of the stochastic process in Equations (4.40) and (4.41) are
shown in Table 1. A 0 denotes the processes are independent for all time; otherwise,
the joint probability density function that describes the relationship is shown. These
dependencies are physically motivated as follows.
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Table 1. Relationship of Stochastic Processes in Eqs. (4.40) and (4.41)
s n1 n2 αl δl βp εp αm�=l δm�=l βq �=p εq �=p

s · 0 0 0 0 0 0 0 0 0 0
n1 0 · 0 0 0 0 0 0 0 0 0
n2 0 0 · 0 0 0 0 0 0 0 0
αl 0 0 0 · fαl,δl 0 0 0 0 0 0
δl 0 0 0 fαl,δl · 0 0 0 0 0 0
βp 0 0 0 0 0 · fβp,εp 0 0 0 0
εp 0 0 0 0 0 fβp,εp · 0 0 0 0

∀l,m ∈ {1, 2, · · · , N1} ∀p, q ∈ {1, 2, · · · , N2}
0 denotes independence; otherwise, fαl,δl and fβp,εp are shorthand nota-
tions defined ∀l ∈ {1, 2, · · · , N1} , ∀p ∈ {1, 2, · · · , N2} , and for all time
sequences {t1, . . . , tN} and {t1, . . . , tM} as

fαl,δl � fαl(t1,·),...,αl(tN ,·),δl(t1,·),...,δl(tM ,·) (ξ1, . . . , ξN , ρ1, . . . , ρM )
fβp,εp � fβm(t1,·),...,βm(tN ,·),εm(t1,·),...,εm(tM ,·) (ξ1, . . . , ξN , ρ1, . . . , ρM)
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The noise terms are assumed to be receiver measurement noise and independent
of each other and the signals (whether direct or replicated). Each replica signal has
an associated attenuation and delay variable, perhaps resulting from the transmitted
signal being reflected off an object before receipt. It is assumed that the receivers are
spaced sufficiently far apart such that the local environments affecting each replica’s
attenuation and delay are independent of each other. Thus, the attenuation and delay
variables associated with any replica at one receiver are independent of all attenuation
and delay variables at the other receiver. Furthermore, each replica is assumed to
result from a unique object or phenomenon. Consequently, the attenuation and
delay variables are independent of all the remaining replicas’ attenuation and delay
variables. As shown in Table 1, the only related variables are the attenuation and
delay of a given replica. Attenuation is due, in part, to a longer travel path length,
absorbent reflective surfaces, scattering upon reflection, etc. The delay variable is a
time representation of the additional travel path length. Thus, the attenuation and
delay variables for a given replica are related through the joint probability density
functions given in Table 1. Note that a phase shift of the replica signal compared to
the direct transmitted signal may be represented in the attenuation or delay variable
and does not impact the results in this section.

4.3.2 Spectral Representation of xmp (·, ·)
In this subsection, Fourier analysis is used to translate the problem at hand into

the frequency domain. The motivation for doing so is that (1) spectral properties
may sometimes be more readily assumed or found experimentally than time domain
properties, and (2) the frequency domain representation may be more mathemati-
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cally tractable than a time domain representation. The result of this subsection
is an equivalent expression of Equations (4.40) and (4.41) in the frequency domain.
Appendix D provides much of the background theory for this section.

Typically, practical systems employ a finite-timelength observation of xmp (·, ·)
for estimation of the navigation parameters (as opposed to considering xmp (·, ·) for
all time). In this subsection, the Fourier transform of xmp (·, ·) is limited to a finite-
timelength observation of xmp (·, ·). This formulation accounts for the observation
length of xmp (·, ·) (allowing the effects of the observation length upon NP to be ana-
lyzed), while also permitting a somewhat less cumbersome spectral analysis than one
which considers all time. The remainder of this subsection develops the spectral rep-
resentation for a finite-timelength observation of xmp (·, ·) and relates this representa-
tion to the transmitted signal, the measurement noises, and the multipath mapping
effects.

Consider a time segment of xmp (·, ·) centered at ti consisting of all xmp (t, ·) over
the region t ∈ [ti − T

2 , ti + T
2
], written as

xmp,Π (t, ·) � 1
T
∏

(t− ti
T
)

xmp (t, ·) ∀t ∈ R1 (4.42)

where the pulse function is defined as
∏ (x) �

{ 1 x ∈ [−1
2 ,+1

2
]

0 otherwise (4.43)

and Π in the subscript denotes the signal is “time-gated”. The inclusion of the 1
T

factor in Equation (4.42) makes the results consistent with results from a formulation
which constrains xmp (t, ·) to be periodic and measures one period [44,45].
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Since xmp,Π (·, ·) is nonzero over a measurable segment of t [59], the ordinary
Fourier transform of xmp,Π (t, ·) given in Equation (4.42) defined over all t, denoted
by x̃mp,Π (·, ·), is given for all f as

x̃mp,Π (f, ·) � F {xmp,Π (t, ·)} (4.44)

= F { 1
T
∏

(t− ti
T
)

xmp (t, ·)
}

(4.45)

where F denotes the Fourier transform. (Notice that the Fourier transform is written
in terms of f rather than ω. This convention avoids scaling factors of 2π that result
from ω = 2πf .) Writing xmp (t, ·) in terms of its components, Equation (4.45)
becomes

x̃mp,Π (·, ·) = F { 1
T
∏

(t− ti
T
)[ x1mp (t, ·)x2mp (t, ·)

]} ∀t (4.46)

Notice that x̃mp,Π (·, ·) is a stochastic process. Each realization of xmp (·, ·) can be
used to generate a realization of x̃mp,Π (·, ·). At each f , x̃mp,Π (f, ·) is a random
variable.

Consider writing x̃mp,Π (·, ·) in terms of the transmitted signal, the measurement
noises, and the multipath mapping effects. Assuming the time delays and atten-
uations are constant over the interval [ti − T

2 , ti + T
2
] and recalling x1mp (·, ·) and

x2mp (·, ·) were defined in Equations (4.40) and (4.41), respectively, Equation (4.46)
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may be written for all t as

x̃mp,Π (·, ·) = F
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Finally, x̃mp,Π (·, ·) may be written for all f as

x̃mp,Π (f, ·) =
















s̃Π (f, ·) e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

s̃Π (f, ·) e−j2πfτ2(ti)
(

1 +
N2
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

)

















+ ñΠ (f, ·)

(4.48)
where

s̃Π (f, ·) � F { 1
T
∏

(t− ti
T
)

s (t, ·)} (4.49)

and

ñΠ (f, ·) � F { 1
T
∏

(t− ti
T
)

n (t, ·)} (4.50)

4.3.3 Characterization of x̃mp,Π (·, ·)
This subsection characterizes the stochastic nature of x̃mp,Π (·, ·), defined as the

Fourier transform of a finite-timelength observation of xmp (·, ·). If it exists, x̃mp,Π (·, ·)
is completely characterized through the joint probability density function

fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ1, . . . , ξN) (4.51)
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for all sequences {f1, . . . , fN}. Using the frequency-domain model for xmp (·, ·) de-
veloped in Subsection 4.3.1, x̃mp,Π (·, ·) and, consequently, the NP of x̃mp,Π (·, ·), may
be characterized through the stochastic nature of the transmitted signal, the mea-
surement noises, and the multipath model effects. The impact of this formulation is
that the NP may be expressed in terms that are meaningful to the designer.

The relationship of x̃mp,Π (·, ·) to
s̃Π (·, ·) , ñΠ (·, ·) , α (ti, ·) , β (ti, ·) , δ (ti, ·) , and ε (ti, ·)

is given in Equation (4.48). The following development considers the probability
density function of x̃mp,Π (·, ·) for a single f . An extension to the single-f case pre-
sented here could be found by augmenting the random variables over each frequency
to accommodate an arbitrary sequence {f1, . . . , fN}.

The aim of this subsection is to find the probability density function of x̃mp,Π (f)
for a single f , denoted as fx̃mp,Π(f,·) (ξ), in terms of the joint probability density
function

fs̃Π(f,·)ñΠ(f,·),α(ti,·),β(ti,·),δ(ti,·),ε(ti,·) (·, ·, ·, ·, ·, ·) (4.52)

where

α (ti, ·) � [ α1 (ti, ·) · · · αN1 (ti, ·) ]T (4.53)

β (ti, ·) � [ β1 (ti, ·) · · · βN2 (ti, ·) ]T (4.54)

δ (ti, ·) � [ δ1 (ti, ·) · · · δN2 (ti, ·) ]T (4.55)

ε (ti, ·) � [ ε1 (ti, ·) · · · εN2 (ti, ·) ]T (4.56)
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Note that the following also hold:

fα(ti,·) � fα1(ti,·),...,αN1(ti,·) (4.57)

fβ(ti,·) � fβ1(ti,·),...,βN2(ti,·) (4.58)

fδ(ti,·) � fδ1(ti,·),...,δN2(ti,·) (4.59)

fε(ti,·) � fε1(ti,·),...,εN2(ti,·) (4.60)

Recall from Table 1 on page 67 that

1. s, n1, and n2 are pairwise independent.

2. αl and δm are pairwise independent of s, n1, and n2 for all l,m ∈ [1, N1].

3. αl and δm are pairwise independent of each other for all l �= m.

4. βp and εq are pairwise independent of s, n1, and n2 for all p, q ∈ [1, N2].

5. βp and εq are pairwise independent of each other for all p �= q.

Therefore, the joint probability density function in Equation (4.52) is equivalent to

fs̃Π(f,·)ñΠ(f,·),α(ti,·),β(ti,·),δ(ti,·),ε(ti,·) (·, ·, ·, ·, ·, ·) =
fs̃Π(f,·) (·) fñΠ1(f,·) (·) fñΠ2(f,·) (·) fα1(ti,·),δ1(ti,·) (·, ·)
· · · fαN1(ti,·),δN1(ti,·) (·, ·) fβ1(ti,·),ε1(ti,·) (·, ·) · · · fβN2(ti,·),εN2(ti,·) (·, ·)

(4.61)

Sequential “change of variables” on the probability density functions (as dictated by
the underlying processes’ relationships in Equation (4.48)) will result in an expression
for fx̃mp,Π(f,·) (ξ) in terms of fs̃Π(f,·) (·), fñΠ1(f,·) (·), fñΠ2(f,·) (·), fαl(ti,·),δl(ti,·) (·, ·), and
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fβp(ti,·),εp(ti,·) (·, ·) for all l ∈ {1, 2, · · · , N1} and for all p ∈ {1, 2, · · · , N2}. It is
assumed that each probability density function in Equation (4.61) is known.

Since this development becomes quite nested, Figure 8 provides a graphical de-
piction of the development flow and the intermediate random variable definitions
for evaluating Equation (4.48). As shown therein, the following development will
progress by defining the intermediate random variables δel , γ1l , γ1Σ, γ1Σ, γ′1Σ, γ′′1Σ,
γ′′2Σ, γ ′′Σ, y, and finally ending with x̃mp,Π. At each step, the appropriate probability
density function will be given. Furthermore, all of the theorems referenced during
the remainder of this subsection may be found in Appendix C. Note that each sto-
chastic process has been evaluated to a random variable. Specifically, the stochastic
processes in this development, i.e.,

s̃Π (·, ·) , ñΠ1 (·, ·) , ñΠ2 (·, ·) , αl (·, ·) , δl (·, ·) , βp (·, ·) , εp (·, ·)∀l ∈ {1, 2, · · · , N1} , p ∈ {1, 2, · · · , N2} (4.62)

have been evaluated to yield random variables, i.e.,
s̃Π (f, ·) , ñΠ1 (f, ·) , ñΠ2 (f, ·) , αl (ti, ·) , δl (ti, ·) , βp (ti, ·) , εp (ti, ·)∀l ∈ {1, 2, · · · , N1} , p ∈ {1, 2, · · · , N2} (4.63)

To find expression for fx̃mp,Π(f,·) (ξ) in terms of each probability density function
in Equation (4.61), begin with the innermost definition in Figure 8. Define, for the
lth delay stochastic process at the first receiver,

δel
(ti, ξδl

) � e−j2πfδl(ti,ξδl) (4.64)

and the transformations θαl and θδl for each l such that
[ αl (ti, ·)
δel (ti, ·)

]

=
[ θαl [αl (ti, ·)]
θδl [δl (ti, ·)]

]

=
[ αl (ti, ·)
e−j2πfδl(ti,·)

]

(4.65)
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Figure 8. Development Flow and Intermediate Random Variable Definitions for Eval-uating Equation (4.48).
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Using Theorem 4 on page 195 with

(θαl)−1 αl (ti, ·) = αl (ti, ·) (4.66)

(θδl)−1 δel (ti, ·) = ln [δel (ti, ·)]−j2πf (4.67)

and
∥

∥

∥

∥

∥

∥

∂
[

(θαl)−1 (ξαl
) , (θδl)−1 (ξδel

)]

∂
(

ξαl, ξδel
)

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∂
∂ξαl

(θαl)−1 (ξαl
) ∂

∂ξδel
(θαl)−1 (ξαl

)

∂
∂ξαl

(θδl)−1 (ξδel
)

∂
∂ξδel

(θδl)−1 (ξδel
)

∥

∥

∥

∥

∥

∥

∥

∥

=

∥

∥

∥

∥

∥

∥

∥

∥

∂
∂ξαl

(ξαl
) ∂

∂ξδel
(ξαl
)

∂
∂ξαl

ln
(

ξδel
)

−j2πf
∂

∂ξδel
ln
(

ξδel
)

−j2πf

∥

∥

∥

∥

∥

∥

∥

∥

=
∥

∥

∥

∥

∥

1 0
0 1

−j2πfξδel

∥

∥

∥

∥

∥

= 1
2π |f |

Thus, each fαl(ti,·),δel (ti,·)
(

ξαl , ξδel
)

can be expressed in terms of fαl(ti,·),δl(ti,·)
(ξαl, ξδl

)

as

fαl(ti,·),δel (ti,·)
(

ξαl , ξδel
)

= 1
2π |f |fαl(ti,·),δl(ti,·)



ξαl,
ln
(

ξδel
)

−j2πf


 (4.68)

Next, define

γ1l (ti, ·) � αl (ti, ·) δel (ti, ·) (4.69)

which represents

γ1l (ti, ·) = αl (ti, ·) e−j2πfδl(ti,·) (4.70)
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At this point, γ1Σ (ti, ·) is a random variable representing the summation within
the first receiver’s received signal. The probability density function of γ1Σ (ti, ·), or
fγ1Σ(ti,·)

(

ξγ1Σ

)

, is given by Equation (4.77). Each probability density function on
the right-hand side of Equation (4.77) may be found in terms of fαl(ti,·),δel(ti,·) (·, ·)
using Equation (4.71). Finally, each probability density function of fαl(ti,·),δel(ti,·) (·, ·)
may be found in terms of fαl(ti,·),δl(ti,·) (·, ·) using Equation (4.68), in which, each
fαl(ti,·),δl(ti,·) (·, ·) is assumed to be known. Thus, γ1Σ (ti, ·) may be used to represent
the multipath effects within the first received signal.

Continuing through Figure 8, let

γ′1Σ (ti, ·) � 1 + γ1Σ (ti, ·) (4.78)

Using Theorem 7 on page 196, the probability density function of γ′1Σ (ti, ·) in terms
of fγ1Σ(ti,·)

(

ξγ1Σ

)

is

fγ′1Σ(ti,·)
(

ξγ′1Σ

)

= fγ1Σ(ti,·)
(

ξγ′1Σ
− 1
)

(4.79)

Defining

γ′′1Σ (ti, ·) � e−j2πfτ1(ti)γ′1Σ (ti, ·) (4.80)

= e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

(4.81)

and noting
∥

∥ej2πfτ1(ti)∥∥ = 1 (4.82)
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application of Theorem 7 results in

fγ′′1Σ(ti,·)
(

ξγ′′1Σ
; τ 1 (ti)

)

= fγ′1Σ(ti,·)
(

ξγ′′1Σ
ej2πfτ1(ti)

)

(4.83)

As indicated in Figure 8, the same procedure as was accomplished for γ′′1Σ (ti, ·)
could be conducted for

γ′′2Σ (ti, ·) � e−j2πfτ2(ti)
(

1 +
N1
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

)

(4.84)

to find fγ′′2Σ(ti,·)
(

ξγ′′2Σ
; τ 2 (ti)

)

in terms of each fβl(ti,·),εl(ti,·) (·, ·). Furthermore, γ′′1Σ (ti, ·)
and γ′′2Σ (ti, ·) are independent, since all γ′′1l (ti, ·) and γ′′2m (ti, ·) are mutually indepen-
dent ∀l ∈ {1, 2, · · · , N1} and ∀m ∈ {1, 2, · · · , N2}. Thus,

fγ′′1Σ(ti,·),γ′′2Σ(ti,·)
(

ξγ′′1Σ
, ξγ′′2Σ

; τ 1 (ti) , τ 2 (ti)
)

= fγ′′1Σ(ti,·)
(

ξγ′′1Σ
; τ 1 (ti)

)

fγ′′2Σ(ti,·)
(

ξγ′′2Σ
; τ 2 (ti)

)

(4.85)

This can be written as

fγ′′Σ(ti,·)
(

ξγ′′
Σ
; τ 1 (ti) , τ 2 (ti)

)

� fγ′′1Σ(ti,·),γ′′2Σ(ti,·)
(

ξγ′′1Σ
, ξγ′′2Σ

; τ 1 (ti) , τ 2 (ti)
)

(4.86)

where

γ ′′Σ (ti, ·) �
[ γ′′1Σ (ti, ·)
γ′′2Σ (ti, ·)

]

(4.87)

For clarity, it is remarked that substitutions in Figure 8 have been used to reduce
Equation (4.48) to

x̃mp,Π (f, ·) = s̃Π (f, ·)γ ′′Σ (ti, ·) + ñΠ (f, ·) (4.88)

for which the probability density functions of s (t, ·), γ ′′Σ (t, ·), and n (t, ·) are all known
and pairwise independent.
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Continuing with Figure 8, define the intermediate term

y (f, ·) = s̃Π (f, ·)γ ′′Σ (ti, ·) (4.89)

Using Theorem 8 on page 196,

fy(f,·)
(ξy
) =
∫ +∞

−∞

1
(ξs)2

fs̃Π(f,·) (ξs) fγ′′1Σ(ti,·)
(ξy1
ξs
)

fγ′′2Σ(ti,·)
(ξy2
ξs
)

dξs (4.90)

Finally,

x̃mp,Π (f, ·) = y (f, ·) + ñΠ (f, ·) (4.91)

is found using Theorem 9 as

fxmp,Π(f,·) (ξx) =
∫ +∞

−∞

∫ +∞

−∞
fy(f,·),ñΠ(f,·)

(ξy, ξx − ξy
) dξy1dξy2 (4.92)

Since z and n are independent,

fxmp,Π(f,·) (ξx) =
∫ +∞

−∞

∫ +∞

−∞
fy(f,·)

(ξy
) fñΠ(f,·)

(ξx − ξy
) dξy1dξy2 (4.93)

Note that fxmp,Π(f,·) (ξx) may be defined in terms of the know probability density
functions, since fñΠ(f,·) (ξn) is known and fy(f,·)

(ξy
) can be related known probability

density functions.
These results may be combined to find fxmp,Π(f,·) (ξx) in terms of the known

probability density functions in Equation (4.61). Recall the previous results:

fy(f,·)
(ξy
) =
∫ +∞

−∞

1
(ξs)2

fs̃Π(f,·) (ξs) fγ′′1Σ(ti,·)
(ξy1
ξs
)

fγ′′2Σ(ti,·)
(ξy2
ξs
)

dξs (4.90)

fγ′′1Σ(ti,·)
(

ξγ′′1Σ
; τ 1 (ti)

)

= fγ′1Σ(ti,·)
(

ξγ′′1Σ
ej2πfτ1(ti)

)

(4.83)
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fγ′1Σ(ti,·)
(

ξγ′1Σ

)

= fγ1Σ(ti,·)
(

ξγ′1Σ
− 1
)

(4.79)

fγ1Σ(ti,·)
(

ξγ1Σ

)

=
∫ +∞

−∞

∫ +∞

−∞
· · · ∫ +∞

−∞
fγ11(ti,·)

(

ξγ1Σ
− ξγ12

− ξγ13
· · · − ξγ1N1

)

•

fγ12(ti,·)
(

ξγ12

)

fγ13(ti,·)
(

ξγ13

) · · · fγ1N1 (ti,·)
(

ξγ1N1

)

•

dξγ12
dξγ13

· · · dξγ1N1
(4.77)

fγ1l(ti,·)
(

ξγ1l

)

=
∫ +∞

−∞

1
∣

∣ξαl

∣

∣

fαl(ti,·),δel(ti,·)
(

ξαl,
ξγl
ξαl

)

dξαl (4.71)

fαl(ti,·),δel (ti,·)
(

ξαl , ξδel
)

= 1
2π |f |fαl(ti,·),δl(ti,·)



ξαl,
ln
(

ξδel
)

−j2πf


 (4.68)

Substituting Equation (4.90) into Equation (4.93), the probability density function
of x̃mp,Π (f, ·) is

fx̃mp,Π(f,·) (ξx) =
∫ +∞

−∞

∫ +∞

−∞
fy(f,·)

(ξy
) fñΠ(f,·)

(ξx − ξy
) dξy1dξy2 (4.94)

=
∫ +∞

−∞

∫ +∞

−∞

[∫ +∞

−∞

1
(ξs)2

fs̃Π(f,·) (ξs) •

fγ′′1Σ(ti,·)
(ξy1
ξs
)

fγ′′2Σ(ti,·)
(ξy2
ξs
)

dξs
]

•

fñΠ (f, ·) (ξx − ξz) dξy1dξy2 (4.95)

=
∫

R3

1
(ξs)2

fs̃Π(f,·) (ξs) fγ′′Σ(ti,·)
(ξy
ξs
)

•

fñΠ(f,·)
(ξx − ξy

) dξsdξy (4.96)
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Using Equation (4.83) and the dual of Equation (4.83) for γ′2Σ (ti, ·),
fx̃mp,Π(f,·) (ξx) =

∫

R3

[ 1
(ξs)2

fs̃Π(f,·) (ξs) fγ′1Σ(ti,·)
(ξy1
ξs e

j2πfτ1(ti)
)

•

fγ′2Σ(ti,·)
(ξy2
ξs e

j2πfτ2(ti)
)

fñΠ(f,·)
(ξx − ξy

)

]

dξsdξy (4.97)

Using Equation (4.79) and the dual of Equation (4.83) for γ2Σ (ti, ·),
fx̃mp(f,·) (ξx) =

∫

R3

[ 1
(ξs)2

fs̃Π(f,·) (ξs) fγ1Σ(ti,·)
(ξy1
ξs e

j2πfτ1(ti) − 1
)

•

fγ2Σ(ti,·)
(ξy2
ξs e

j2πfτ2(ti) − 1
)

fñΠ(f,·)
(ξx − ξy

)

]

dξsdξy (4.98)

Now, in the general case, Equation (4.77) is used to write γ1Σ (ti, ·) as the convolution
of N1 terms. The results for an arbitrary N1 ≥ 0 have been provided, but for space
considerations, consider when N1 = 1 (and, likewise, N2 = 1):

fx̃mp(f,·) (ξx) =
∫

R3

[ 1
(ξs)2

fs̃Π(f,·) (ξs) fγ1l(ti,·)
(ξy1
ξs e

j2πfτ1(ti) − 1
)

•

fγ2m(ti,·)
(ξy2
ξs e

j2πfτ2(ti) − 1
)

fñΠ(f,·)
(ξx − ξy

)

]

dξsdξy (4.99)

where only the lth and mth multipath terms in x1mp (·, ·) and x1mp (·, ·), respectively,
have been retained. Using Equation (4.71) and the dual of Equation (4.71) for
γ2m (ti, ·) ,
fx̃mp,Π(f,·) (ξx) =

∫

R3

1
(ξs)2

fs̃Π(f,·) (ξs) •

∫ +∞

−∞

1
∣

∣ξαl

∣

∣

fαl(ti,·),δel(ti,·)
{

ξαl ,
1
ξαl

[ξy1
ξs e

j2πfτ1(ti) − 1
]}

dξαl•

∫ +∞

−∞

1
∣

∣ξβm

∣

∣

fβm(ti,·),εem(ti,·)

{

ξβm,
1
ξβm

[ξy2
ξs e

j2πfτ2(ti) − 1
]

}

dξβm•

fñΠ(f,·)
(ξx − ξy

) dξsdξy (4.100)
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Rearranging,

fx̃mp,Π(f,·) (ξx) =
∫

R5

1
(ξs)2

fs̃Π(f,·) (ξs) fñΠ(f,·)
(ξx − ξy

)

•

1
∣

∣ξαl

∣

∣

fαl(ti,·),δel(ti,·)
{

ξαl ,
1
ξαl

[ξy1
ξs e

j2πfτ1(ti) − 1
]}

•

1
∣

∣ξβm

∣

∣

fβm(ti,·),εem(ti,·)

{

ξβm,
1
ξβm

[ξy2
ξs e

j2πfτ2(ti) − 1
]

}

•

dξαldξβmdξsdξy (4.101)

Using Equation (4.68) and the dual of Equation (4.68) for βm (ti, ·) and εem (ti, ·),
fx̃mp,Π(f,·) (ξx) = 1

(2π |f |)2
∫

R5

1
(ξs)2

fs̃Π(f,·) (ξs) fñΠ(f,·)
(ξx − ξy

)

•

1
∣

∣ξαl

∣

∣

fαl(ti,·),δl(ti,·)
(

ξαl,
1−j2πf ln

{ 1
ξαl

[ξy1
ξs e

j2πfτ1(ti) − 1
]})

•

1
∣

∣ξβm

∣

∣

fβm(ti,·),εm(ti,·)

(

ξβm,
1−j2πf ln

{

1
ξβm

[ξy2
ξs e

j2πfτ2(ti) − 1
]

})

•

dξαldξβmdξsdξy (4.102)

Equation (4.102) expresses fx̃mp,Π(f,·) (·) at a given frequency, f , in terms of the
following known probability density functions:

fs̃Π(f,·) (·) , fñΠ(f,·) (·) , fαl(ti,·),δl(ti,·) (·) , fβm(ti,·),εm(ti,·) (·)
This is the desired result–the stochastic nature of the received signal is written in
terms of the transmitted signal, the measurement noises, and the multipath model
effects. Recall, a complete characterization of x̃mp,Π (f, ·) requires finding the joint
probability density function given in Equation (4.51), repeated here as

fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ1, . . . , ξN) (4.51)
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for all sequences {f1, . . . , fN}. A procedure similar to the one presented here could be
used to find an expression for fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·). Furthermore, each x̃mp,Π (fi, ·)
is orthogonal to x̃mp,Π (fj, ·) for all fj �= fi. If only the characteristics up to sec-
ond order of the joint probability density function in Equation (4.51) were used in an
analysis, the orthogonality of x̃mp,Π (fi, ·) could be exploited to simplify the process
to go from Equation (4.102) to Equation (4.51). Section 4.4 considers one example
for which this is a reasonable analysis — jointly Gaussian processes — since charac-
teristics up to second order for a Gaussian probability density function completely
characterize the probability density function. Without employing the up-to-second-
order-simplification, the next section continues a general approach to the NP of x̃mp,Π

using the joint density of fx̃mp,Π in Equation (4.51).

4.3.4 Finding NP (x̃mp,Π)
The NP of x̃mp,Π (·, ·) can be found in terms of the joint probability density

function (jpdf) given in Equation (4.51). The jpdf of x̃mp,Π (f1, ·) , . . . , x̃mp,Π (fN , ·)
for an arbitrary sequence {f1, . . . , fN} is in general a function of τ 1 and τ 2 (and not
the difference τ 1 − τ 2). Thus, Equation (4.22) can be used to find the FIM of

θ � [ τ 1 τ 2 ]T (4.103)

given the random variable, x̃mp,Π (·), defined as

x̃mp,Π (·) � [ x̃mp,Π (f1, ·)T · · · x̃mp,Π (fN , ·)T ]T (4.104)
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for some arbitrary sequence {f1, . . . , fN}. The result is

I (θ) =













−E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

} −E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}

−E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ2∂τ1

} −E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ2)2

}













(4.105)

Finally, using Equation (4.105) in Equation (4.37),

NP {x̃mp,Π (·)} = −

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ2)2

}

−E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}2

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}

+ E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ2)2

}

+2E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}

(4.106)
The general nature of this formulation results in an expression for NP {x̃mp,Π (·)}

that is not readily interpreted. However, given the densities of the signal, noise, and
multipath characteristics, the results found here can be used to find NP {x̃mp,Π (·)}.
Due to the lax constraints, many problems of practical interest may be solved using
this new result. Chapter 5 will specify some typical densities to show how this may
be used in practice. The next section finds the NP when the received signal is
assumed to be Gaussian. This greatly simplifies the expression for the NP, since the
probability density function of the received signal may be characterized completely
through the first and second order moments.
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4.4 Multipath Model: Gaussian Received Signal
The NP for a received signal with multipath effects has been presented in very

general terms. An interesting subclass of problems results when x̃mp,Π (·, ·) is modeled
as a Gaussian stochastic process, denoted as x̃gmp,Π (·, ·) to indicate explicitly that it is
assumed Gaussian. This section introduces this restriction to yield a more tractable
form for the navigation potential (NP). (This assumption’s relationship with other
assumptions within this chapter is shown as Box III in Figure 7 on page 50.)

In the previous section, multipath mappings were given in the time domain in
Equations (4.40) and (4.41) and the frequency domain in Equation (4.48). Modifying
the subscript to indicate a multipath model with Gaussian assumptions, the time-
domain signal model is

xgmp (·, ·)=
[ x1gmp (·, ·)x2gmp (·, ·)

]

(4.107)

where x1gmp is, for all admissible t,

x1gmp (t, ·) = s (t− τ 1 (t) , ·) + n1 (t, ·)
+

N1
∑

l=1
αl (t, ·) s [t− τ 1 (t)− δl (t, ·) , ·] (4.108)

and x2gmp is, for all admissible t,

x2gmp (t, ·) = s (t− τ 2 (t) , ·) + n2 (t, ·)
+

N2
∑

l=1
βl (t, ·) s [t− τ 2 (t)− εl (t, ·) , ·] (4.109)
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Similarly, the frequency-domain signal model may be written for Gaussian assump-
tions as

x̃gmp,Π (f, ·) =
















s̃Π (f, ·) e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

s̃Π (f, ·) e−j2πfτ2(ti)
(

1 +
N2
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

)

















+ ñΠ (f, ·)

(4.110)
Many of the stochastic process in Equations (4.108) and (4.109) will be modeled

as Gaussian stochastic processes. Briefly, a Gaussian stochastic process, y (·, ·), is
defined as a stochastic process for which the joint probability density function

fy(t1,·),...,y(tN ,·) (ξ1, . . . , ξN)

is Gaussian for all time sequences {t1, . . . , tN} if it exists. A Gaussian probability
density function for an arbitrary, real-valued, m-dimensional random variable y (·) is
given by

fy(·) (ξ) = 1
(2π)m

2 |C| 12 e[−
1
2 (ξ−µ)TC−1(ξ−µ)] (4.111)

where ξ is the realization of y, µ � E {y (·)}, and C � E
{

[y (·)− µ] [y (·)− µ]T
}

.
The following list motivates the assumptions for each term in xgmp (·, ·).
1. s (·, ·) represents the received signal stochastic process. Many signals of

interest may be approximated a zero-mean, ergodic, wide-sense stationary,
stochastically continuous, Gaussian stochastic process. For the ith receiver,
each s (t− τ i (t) , ·) for all admissible t is a zero-mean, ergodic, wide-sense
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stationary, stochastically continuous, Gaussian stochastic process with the
known power spectral density, Gss (f). The probability density function
at some time, fs(t,·) (ξ), is known, where the form of fs(t,·) (ξ) is given in
Equation (4.111) with ms = 1, µs = 0, and Cs = σ2s, or

fs(t,·) (ξ) = 1√2πσs
e
(

− ξ2
2σ2s

)

(4.112)

2. ni (·, ·) represents the ith receiver’s measurement noise stochastic process and is
assumed to be a zero-mean, ergodic, strict sense stationary, Gaussian stochastic
process. Letting

n (·, ·) �




n1 (·, ·)
n2 (·, ·)



 (4.113)

n (·, ·) is a zero-mean, ergodic, strict sense stationary, Gaussian stochastic
process with the known power spectral densities Gn1n1 (f) and Gn2n2 (f) and
the known cross-spectral density Gn1n2 (f). For each t, the probability density
function, fn(t,·) (ξ), is known, with the form given in Equation (4.111) with
mn = 2, µn = 0, and

Cn =




σ2n1 0
0 σ2n2



 (4.114)

3. Since F {·} is a linear transformation, s̃Π (·, ·), ñΠ1 (·, ·), and ñΠ2 (·, ·) are
zero-mean, Gaussian stochastic processes. Furthermore, from the results in
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Appendix E, the autocorrelation kernels of s̃Π (·, ·), ñΠ1 (·, ·), and ñΠ2 (·, ·) are
E {s̃Π (f, ·) [s̃Π (f − ε, ·)]∗} ≈ 1

T Gss (f) δκ (ε) (4.115)

E {ñΠ1 (f, ·) [ñΠ1 (f − ε, ·)]∗} ≈ 1
T Gn1n1 (f) δκ (ε) (4.116)

E {ñΠ2 (f, ·) [ñΠ2 (f − ε, ·)]∗} ≈ 1
T Gn2n2 (f) δκ (ε) (4.117)

where δκ (·) is the modified Kronecker delta function with a continuous
argument, i.e., δκ (ε) is defined for all ε ∈ R1 through

δκ (ε) �






1 ε = 0
0 otherwise

(4.118)

This list represents the assumptions that will be used for the remainder of this
section. For clarity, (·)gmp indicates the identical multipath model as (·)mp under the
additional constraint that these Gaussian assumptions hold.

The aim of this section is to find the NP of the received signal when it is ap-
propriately modeled with jointly Gaussian stochastic processes. To accomplish this
task, the remainder of the this section will (1) develop the Gaussian received signal
model, and (2) find an expression for NP.

4.4.1 Gaussian x̃gmp,Π (·, ·)
Consider when the received signal is modeled as a Gaussian stochastic process.

Referring to Equation (4.110), this condition may be established when

s̃Π (f, ·) e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

(4.119)

over all admissible f is a Gaussian stochastic process. Notice that ñΠ (·, ·) is not
included in the above expression. Recall that the linear combination of two inde-
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pendent Gaussian random variables is Gaussian. Since each ñi (f, ·) is a Gaussian
random variable independent of each of the remaining random variables in Equa-
tion (4.110) (which are stochastic processes evaluated for some f), the expression in
Equation (4.119) being jointly Gaussian for all sequences {f1, . . . , fN} is sufficient for
x̃gmp,Π (·, ·) to be Gaussian.

Gaussian assumptions may be considered as an approximation to the true joint
probability density function. Typical Gaussian justifications reason that Gaussian
density functions capture the overall distribution in many instances [47]. Gaussian
approximations are suitable for NP applications when the curvature of x̃mp,Π (·, ·)
about the true value for θ, i.e.,

ln fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ; θ) (4.120)

(where fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ; θ) is not necessarily Gaussian) is well-represented by
the curvature of x̃gmp,Π (·, ·) about the true value for θ, i.e.,

ln fx̃gmp,Π(f1,·),...,x̃gmp,Π(fN ,·) (ξ; θ) (4.121)

(where fx̃gmp,Π(f1,·),...,x̃gmp,Π(fN ,·) (ξ; θ) is Gaussian). That fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ; θ)
may be well-represented as Gaussian in ξ is not the issue for NP considerations
(even though it is often the case that this assumption is valid for real systems [47]).
Furthermore, no claim is made that fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ; θ) is Gaussian in θ;
rather, fx̃mp,Π(f1,·),...,x̃mp,Π(fN ,·) (ξ;θ) is parameterized by θ. The validity of a Gaussian
assumption as it pertains to NP is that the curvature of the original density function is
well represented by the curvature of a Gaussian approximation to the original density
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function. This slight distinction should be considered when making approximations
for NP calculations.

Assuming x̃gmp,Π (·, ·) is a complex-valued, Gaussian stochastic process, the joint
probability density function for any sequence {f1, . . . , fN}may be characterized through
the mean and autocorrelation matrix of the vector formed by

[ x̃gmp,Π (f1, ·)T · · · x̃gmp,Π (fN , ·)T ]T
Furthermore, the process mean and autocorrelation kernel may be used to describe
a Gaussian stochastic process. (It will be shown that x̃gmp,Π (·, ·) is also orthogonal;
therefore, the process mean and autocorrelation matrix provide a complete description
of fx̃gmp,Π(f,·) for any admissible f .) The remainder of this section finds the process
mean for all admissible f , denoted by µx̃gmp,Π(·,·) (f), and the autocorrelation kernel
for all admissible f1 and f2, denoted by Cx̃gmp,Π(·,·) (f1, f2).

4.4.1.1 Mean of x̃gmp,Π (·, ·). The process mean of x̃gmp,Π (·, ·) for all
admissible f is defined as

µx̃gmp,Π(·,·) (f) � E {x̃gmp,Π (f, ·)} (4.122)

Since s̃Π (f, ·) and ñΠ (f, ·) are zero-mean and independent of the terms in x̃gmp,Π (f, ·)
given in Equation (4.110), the process mean of x̃gmp,Π (·, ·) for all admissible f is

µx̃gmp,Π(·,·) (f) = 0 (4.123)
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4.4.1.2 Autocorrelation Kernel of x̃gmp,Π (·, ·). The autocorrelation
kernel of x̃gmp,Π (·, ·) for all admissible f,f − ε is defined as

C̃x̃gmp,Π(·,·) (f, f − ε) � E
{

x̃gmp,Π (f, ·) [x̃gmp,Π (f − ε, ·)]H} (4.124)

where H denotes the conjugate transpose (“H” for “Hermitian”). Using the received
signal model given in Equation (4.110), the remainder of this subsection finds the
autocorrelation kernel of x̃gmp,Π (·, ·) in terms of the transmitted signal, the measure-
ment noises, and the multipath model effects.

Let x̃gmp,Π (·, ·) given in Equation (4.110) for all admissible f be represented by

x̃gmp,Π (f, ·) = s̃Π (f, ·)E (f) λ̃ (f, ·) + ñΠ (f, ·) (4.125)

where

E (f) �
[ e−j2πfτ1(ti) 0

0 e−j2πfτ2(ti)
]

(4.126)

and

λ̃ (f, ·) �
















1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

1 +
N2
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

















(4.127)

Now, Equation (4.124) becomes

C̃x̃gmp,Π(·,·) (f, f − ε) = E
{

x̃gmp,Π (f, ·) [x̃gmp,Π (f − ε, ·)]H} (4.128)

= E
{[ s̃Π (f, ·)E (f) λ̃ (f, ·) +

+ñΠ (f, ·)
]

•

[ s̃Π (f − ε, ·)E (f − ε) λ̃ (f − ε, ·) +
+ñΠ (f − ε, ·)

]H}

(4.129)

92



Noting that E (f) is deterministic for all admissible f , and s̃Π (f, ·), λ̃ (f, ·), and
ñΠ (f, ·) are all zero-mean and pairwise independent for all admissible f , Equa-
tion (??) becomes

C̃x̃gmp,Π(·,·) (f, f − ε) =
(

E {s̃Π (f, ·) [s̃Π (f − ε, ·)]∗}E (f) •

E
{

λ̃ (f, ·) [λ̃ (f − ε, ·)]H} [E (f − ε)]∗
)

+

+E
{

ñΠ (f, ·) [ñΠ (f − ε, ·)]H} (4.130)

Using the results from Appendix E with z̃ (f, ·) � s̃Π (f, ·), the autocorrelation
kernel of s̃Π (·, ·) is given in Equation (4.115) and repeated here as

E {s̃Π (f, ·) [s̃Π (f − ε, ·)]∗} ≈ 1
T Gss (f) δκ (ε) (4.115)

in which δκ (·) is the Kronecker delta function given in Equation (4.118) and repeated
here as

δκ (ε) �






1 ε = 0
0 otherwise

(4.118)

The Kronecker delta function arises because the spectral representation of s (·, ·) is
orthogonal, i.e., for all admissible f1 �= f2,

E {s̃Π (f1, ·) [s̃Π (f2, ·)]∗} = 0 (4.131)

Likewise, the results from Appendix E may be used to obtain the autocorrelation ker-
nels of ñΠ1 (f1, ·) and ñΠ2 (f2, ·) given in Equations (4.116) and (4.117), respectively.
Recalling ñΠ1 (f1, ·) and ñΠ2 (f2, ·) are pairwise independent for all f1 and f2,

E
{

ñΠ (f, ·) [ñΠ (f − ε, ·)]H} ≈ 1
TGnn (f) δκ (ε) (4.132)
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where

Gnn (f) =
[ Gn1n1 (f) 0

0 Gn2n2 (f)
]

(4.133)

Substituting Equations (4.115) and (4.132) in Equation (4.130),

C̃x̃gmp,Π(·,·) (f, f − ε) ≈ 1
T Gss (f) δ (ε)E (f)E

{

λ̃ (f, ·) [λ̃ (f − ε, ·)]H} [E (f − ε)]∗

+ 1
TGnn (f) δκ (ε) (4.134)

Due to the effects of δκ (ε), Equation (4.134) may be written as

C̃x̃gmp,Π(·,·) (f, f − ε) ≈ ( 1
T Gss (f)E (f)E

{

λ̃ (f, ·) [λ̃ (f, ·)]H} [E (f)]∗ +

+ 1
TGnn (f)

)

δκ (ε) (4.135)

Using the definitions for λ̃ (f, ·) and E (f), Equation (4.135) may be exploited
further. First, E

{

λ̃ (f, ·) [λ̃ (f, ·)]H} may be defined as

C̃λ̃ (f) � E
{

λ̃ (f, ·) [λ̃ (f, ·)]H} =
[ Cλ̃11 (f) C̃λ̃12 (f)C̃λ̃12 (f)∗ Cλ̃22 (f)

]

(4.136)

Using the definition of γ (f, ·) in Equation (4.127) and the relationship of each at-
tenuation and delay term (given in Table 1 on page 67), the first diagonal term in
Equation (4.136) may be found as

Cλ̃11 (f) � E
{

λ̃1 (f, ·) [λ̃1 (f, ·)]∗} (4.137)

= E
{[

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

]

•

[

1 +
N1
∑

m=1
αm (ti, ·) e−j2πfδm(ti,·)

]∗}

(4.138)
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Cλ̃11 (f) = 1 + E
{ N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·) +

N1
∑

m=1
αm (ti, ·) e+j2πfδm(ti,·)

}

+

+E
{[ N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

] [ N1
∑

m=1
αm (ti, ·) e+j2π(f−ε)δm(ti,·)

]}

(4.139)

Again, using the relationship of each attenuation and delay term given in Table 1 and
noting that for any complex valued ã that

ã+ (ã)∗ = 2Re (ã) (4.140)

ã (ã)∗ = |ã|2 (4.141)

Equation (4.139) becomes

Cλ̃11 (f) = 1 +
N1
∑

l=1

(2E {Re [αl (ti, ·) e−j2πfδl(ti,·)]} + E {[αl (ti, ·)]2})+
+

N1
∑

l=1

N1
∑

m=l+1
E {2Re [αl (ti, ·)αm (ti, ·) e−j2πf [δl(ti,·)−δm(ti,·)]]}

(4.142)

In a similar manner, the second diagonal term in Equation (4.136), defined as

Cλ̃22 (f) � E
{

λ̃2 (f, ·) [λ̃2 (f, ·)]∗} (4.143)

may be found as

Cλ̃22 (f) = 1 +
N2
∑

p=1

(

2E {Re [βp (ti, ·) e−j2πfεp(ti,·)]}+ E
{

[βp (ti, ·)]2})+
+

N2
∑

p=1

N2
∑

q=p+1
E {2Re [βp (ti, ·)βq (ti, ·) e−j2πf [εp(ti,·)−εq(ti,·)]]}

(4.144)
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The off-diagonal terms do not reduce much; however, for completeness, C̃λ̃12 (f) de-
fined as

C̃λ̃12 (f) � E
{

λ̃1 (f, ·) [λ̃2 (f, ·)]∗} (4.145)

may be written as

C̃λ̃12 (f) = 1 + E
{ N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·) +

N2
∑

p=1
βp (ti, ·) e+j2πfεp(ti,·)

}

+

+E
{[ N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

] [ N2
∑

p=1
βp (ti, ·) e+j2π(f−ε)εp(ti,·)

]}

(4.146)

Using the relationship of each attenuation and delay term given in Table 1,

C̃λ̃12 (f) = 1 +
N1
∑

l=1
E {αl (ti, ·) e−j2πfδl(ti,·)}+

N2
∑

p=1
E {βp (ti, ·) e+j2πfεp(ti,·)}+

+
N1
∑

l=1
E {αl (ti, ·) e−j2πfδl(ti,·)}

N2
∑

p=1
E {βp (ti, ·) e+j2π(f−ε)εp(ti,·)}

(4.147)

Unlike Cλ̃11 (f) and Cλ̃22 (f), C̃λ̃12 (f) is in general complex-valued (and annotated
with ˜ ).

From the definition of E (f) in Equation (4.126) and using C̃λ̃ (f) in Equa-
tion (4.136), let Υ̃ (f ; τ∆) be defined as

Υ̃ (f ; τ∆) � E (f) C̃λ̃ (f) [E (f)]∗ (4.148)

=




Cλ̃11 (f) C̃λ12 (f) e−j2πf [τ1(ti)−τ2(ti)]

C̃λ12 (f)∗ e+j2πf [τ1(ti)−τ2(ti)] Cλ̃22 (f)





(4.149)
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Notice that Υ̃ (f ; τ∆) is only parameterized by the difference

τ∆ (ti) � τ 1 (ti)− τ 2 (ti) (4.150)

(and so annotated with “; τ∆”). Since Υ̃ (f ; τ∆) is the only term in

C̃x̃gmp,Π(·,·) (f, f − ε)

that depends upon τ 1 (ti) or τ 2 (ti), the stochastic nature of x̃gmp,Π (f, ·) is parame-
terized by τ∆ (ti) only.

Using these relationships for λ (f, ·) and E (f), Equation (4.135) may be written
as

C̃x̃gmp,Π(·,·) (f, f − ε; τ∆) ≈ 1
T
[

Gss (f) Υ̃ (f ; τ∆) +Gnn (f)
]

δκ (ε) (4.151)

where the dependence upon the parameter τ∆ is shown explicitly. When ε = 0, the
autocorrelation kernel reduces to the autocorrelation matrix, C̃x̃gmp,Π(·,·) (f ; τ∆), given
by

C̃x̃gmp,Π(f,·) (f ; τ∆) ≈ 1
T
[

Gss (f) Υ̃ (f ; τ∆) +Gnn (f)
]

(4.152)

Using Gnn (f) and Υ̃ (f ; τ∆) given in Equations (4.133) and (4.149), respectively,
Equation (4.152) becomes

C̃ (f ; τ∆) = 1
T





Gss (f)Cλ̃11 (f) +Gn1n1 (f) Gss (f) C̃λ̃12 (f) e−j2πfτ∆(ti)

Gss (f) C̃λ̃12 (f)∗ e+j2πfτ∆(ti) Gss (f)Cλ̃22 (f) +Gn2n2 (f)





(4.153)
Thus, Equation (4.110) was used to characterize x̃gmp,Π (·, ·) in terms of the trans-

mitted signal, the measurement noises, and the multipath model effects. In fact, since
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x̃gmp,Π (·, ·) is an orthogonal, Gaussian stochastic process, fx̃gmp,Π(·,·;τ∆) is completely
characterized for all admissible f through the mean and autocorrelation kernel given
in Equations (4.123) and (4.151), respectively, and repeated here as

µx̃gmp,Π (f) = 0 (4.123)

C̃x̃gmp,Π(·,·) (f, f − ε; τ∆) ≈ 1
T
[

Gss (f) Υ̃ (f ; τ∆) +Gnn (f)
]

δκ (ε) (4.151)

Note that Υ(f ; τ∆) is given in Equation (4.149). Alternatively, the autocorrelation
kernel may be expanded using Equation (4.153) in Equation (4.151) to yield

C̃x̃gmp,Π(·,·) (f, f − ε; τ∆)

≈ 1
T





Gss (f)Cλ̃11 (f) +Gn1n1 (f) Gss (f) C̃λ̃12 (f) e−j2πfτ∆(ti)

Gss (f) C̃λ̃12 (f)∗ e+j2πfτ∆(ti) Gss (f)Cλ̃22 (f) +Gn2n2 (f)



 δκ (ε)
(4.154)

Next, the relationships developed in this subsection will be used to find the NP for
x̃gmp,Π (·, ·).
4.4.2 Finding the NP for a Gaussian x̃gmp,Π (·, ·)

In this subsection, the NP for a Gaussian x̃gmp,Π (·, ·) is found in terms of the
transmitted signal, the measurement noises, and the multipath model effects. This
section combines the characterization of x̃gmp,Π (·, ·) found in the previous subsection
with NP theory developed in Section 4.2. (This assumption’s relationship with other
assumptions within this chapter is shown as Box III in Figure 7 on page 50.)

Let x̃gmp,Π (·, ·) be a zero-mean, ergodic, wide-sense stationary, Gaussian sto-
chastic process with an autocorrelation kernel given by Equation (4.151). Using
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Equation (4.27), the NP of x̃gmp,Π (·, ·) quantifies the ability to estimate

τ∆ � τ 1 − τ 2

given the stochastic process x̃gmp,Π (·, ·) through
NP (x̃gmp,Π) = Ix̃gmp,Π (τ̂∆) (4.155)

where Ix̃gmp,Π (τ̂∆) is the scalar case for the Fisher information matrix (FIM) given in
Equation (4.22). Since x̃gmp,Π (·, ·) is also an orthogonal process, Ix̃gmp,Π (τ̂∆) may be
found through

Ix̃gmp,Π (τ̂∆) =
∫ +∞

−∞
Ix̃gmp,Π(f,·) (f ; τ̂∆) df (4.156)

where Ix̃gmp,Π(f,·) (f ; τ̂∆) is the information about τ∆ contained in x̃gmp,Π (·, ·) at the
frequency f and is given by

Ix̃gmp,Π(f,·) (f ; τ∆) = −E{ ∂2
(∂τ∆)2 ln

[

fx̃gmp,Π(f,·)
(

ξ̃; τ∆
)]

}

(4.157)

The probability density function for an arbitrary, complex -valued,m-dimensional
Gaussian random variable ỹ (·) is given by

fỹ(·) (ξ) = 1
πm
∣

∣

∣C̃
∣

∣

∣

e
[

− 1
2(ξ̃−µ̃)HC̃−1(ξ̃−µ̃)] (4.158)

where ξ̃ is the realization of ỹ, µ̃ � E {ỹ (·)}, C̃ � E
{

[ỹ (·)− µ̃] [ỹ (·)− µ̃]H
}

, and H

denotes the conjugate transpose. Thus, for some f , the probability density function
of the zero-mean (from Equation (4.123)), complex-valued, Gaussian random variable
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x̃gmp,Π (f, ·) is given by

fx̃gmp,Π(f,·)
(

ξ̃; τ∆
)

= 1
π2
∣

∣

∣C̃x̃gmp,Π(f,·) (f ; τ∆)
∣

∣

∣

e
{

−1
2 ξ̃

H[

C̃x̃gmp,Π(f,·)(f ;τ∆)
]−1ξ̃

}

(4.159)

where C̃x̃gmp,Π(f,·) (f ; τ∆), given through Equation (4.153), is the autocorrelation ma-
trix of x̃gmp,Π (f, ·) parameterized by τ∆.

Evaluating I (f ; τ∆) given in Equation (4.157) (and dropping the subscripts on
C̃x̃gmp,Π(f,·) (f ; τ∆) and Ix̃gmp,Π(f,·) (f ; τ∆)),

I (f ; τ∆) = −E{ ∂2
(∂τ∆)2 ln

[

fx̃gmp,Π(f,·;τ∆)
(

ξ̃; τ∆
)]

}

(4.160)

= E
{ ∂2
(∂τ∆)2

[

2 lnπ + ln
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣+ 1
2 ξ̃

H [C̃ (f ; τ∆)
]−1 ξ̃

]}

(4.161)

From C̃ (f ; τ∆) given in Equation (4.153), it can be shown that
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ is inde-
pendent of τ∆. Consequently, only the last term in Equation (4.161) is a function of
τ∆:

I (f ; τ∆) = E










1
2 ξ̃

H ∂2
[

C̃ (f ; τ∆)
]−1

(∂τ∆)2 ξ̃










(4.162)

= E






1
2 ξ̃

H ∂2
(∂τ∆)2





adj
{

C̃ (f ; τ∆)
}

∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣



 ξ̃






(4.163)

Since C̃ (f ; τ∆) is Hermitian (and notating the i−j element of C̃ (f ; τ∆) by C̃ij (f ; τ∆)),
the adjoint of C̃ (f ; τ∆), denoted by adj

[

C̃ (f ; τ∆)
]

, is

adj
{

C̃ (f ; τ∆)
}

=






C̃22 (f ; τ∆) −C̃12 (f ; τ∆)

− [C̃12 (f ; τ∆)
]∗ C̃11 (f ; τ∆)





 (4.164)
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and
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ is
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ = C̃11 (f ; τ∆) C̃22 (f ; τ∆)− ∣∣∣C̃12 (f ; τ∆)
∣

∣

∣

2 (4.165)

Now, noting from Equation (4.153) that C̃11 (f ; τ∆) , C̃22 (f ; τ∆) , and
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ are
not functions of τ∆, Equation (4.163) becomes

I (f ; τ∆) = E






1
2 ξ̃

H








T
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣



 •

∂2
(∂τ∆)2













C̃22 (f ; τ∆) −C̃12 (f ; τ∆)

− [C̃12 (f ; τ∆)
]∗ C̃11 (f ; τ∆)

















 ξ̃










(4.166)

= T
2
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣

E















[ ξ̃∗1
ξ̃∗2

]T
















0 −∂2C̃12(f ;τ∆)
(∂τ∆)2

−∂2[C̃12(f ;τ∆)∗]
(∂τ∆)2 0

















[ ξ̃1
ξ̃2
]















(4.167)

= − T
2
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣

E








ξ̃∗2
∂2
[

C̃12 (f ; τ∆)
]∗

(∂τ∆)2 ξ̃1 + ξ̃∗1∂
2C̃12 (f ; τ∆)
(∂τ∆)2 ξ̃2











(4.168)

= − T
2
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣





∂2
[

C̃12 (f ; τ∆)
]∗

(∂τ∆)2 E
{

ξ̃1ξ̃∗2
}

+ ∂2C̃12 (f ; τ∆)
(∂τ∆)2 E

{

ξ̃∗1ξ̃2
}





(4.169)

= − T
2
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣





∂2
[

C̃12 (f ; τ∆)
]∗

(∂τ∆)2 C̃12 (f ; τ∆) +

+ ∂2C̃12 (f ; τ∆)
(∂τ∆)2

[

C̃12 (f ; τ∆)
]∗
)

(4.170)

= − T
∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣

Re
(

∂2C̃12 (f ; τ∆)
(∂τ∆)2

[

C̃12 (f ; τ∆)
]∗
)

(4.171)
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Notice that I (f ; τ∆) is real-valued. Using the property [43]

I (f ; τ∆) ≥ 0 (4.172)

and noting that C12 (f) ≥ 0, the curvature of G̃x̃1,gmpx̃2,gmp (f) near the true delay
will be negative (concave down). Furthermore, C̃12 (f ; τ∆) is the only factor in
I (f ; τ∆) that depends upon τ∆. Intuitively, the steepness of C̃12 (f ; τ∆) dictates the
information about τ∆ contained in x̃gmp,Π (·, ·) at f .

Since x̃gmp,Π (·, ·) is an orthogonal process, Ix̃gmp,Π (τ̂∆) may be found using Equa-
tion (4.156):

Ix̃gmp,Π (τ̂∆) = T
∫ +∞

−∞

−Re
(∂2C̃12(f ;τ∆)

(∂τ∆)2
[

C̃12 (f ; τ∆)
]∗)

∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣

df (4.173)

It is noted when T is not sufficiently large, x̃gmp,Π (f) may be correlated over f ,
resulting in the degraded information ID (τ∆) ≤ I (τ∆). Furthermore, Ix̃gmp,Π (τ̂∆) is
linear in T . (A necessary condition for Ix̃gmp,Π (τ̂∆) to be linear in T is that the time
delays and attenuations are constant over the interval [ti − T

2 , ti + T
2
]. See page 70.)

From Equation (4.27), Equation (4.173) is also NP (x̃gmp,Π).
Using Equation (4.153), the following identities hold:

C̃12 (f ; τ∆) = Gss (f) C̃λ̃12 (f) e−j2πfτ∆(ti) (4.174)

∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ = C̃11 (f ; τ∆) C̃22 (f ; τ∆)− ∣∣∣C̃12 (f ; τ∆)
∣

∣

∣

2 (4.175)

= [Gss (f)Cλ̃11 (f) +Gn1n1 (f)
] [Gss (f)Cλ̃22 (f) +Gn2n2 (f)

]

− ∣∣∣Gss (f) C̃λ̃12 (f) e−j2πfτ∆(ti)
∣

∣

∣

2 (4.176)
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∣

∣

∣C̃ (f ; τ∆)
∣

∣

∣ = Gss (f)2
[

Cλ̃11 (f)Cλ̃22 (f)− ∣∣∣C̃λ̃12 (f)
∣

∣

∣

2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) +Gn2n2 (f)Cλ̃11 (f)
]

+Gn1n1 (f)Gn2n2 (f) (4.177)

Thus, the NP of x̃gmp,Π (·, ·) is

NP (x̃gmp,Π) = T
∫ +∞

−∞

−Gss (f)2
∣

∣

∣C̃λ̃12 (f)
∣

∣

∣

2
•

Re
(

∂2
(∂τ∆)2

[e−j2πfτ∆(ti)] [e−j2πfτ∆(ti)]∗
)









Gss (f)2
[

Cλ̃11 (f)Cλ̃22 (f)− ∣∣∣C̃λ̃12 (f)
∣

∣

∣

2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) +Gn2n2 (f)Cλ̃11 (f)
]

+Gn1n1 (f)Gn2n2 (f)









df

(4.178)
and then, finally:

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)2
∣

∣

∣C̃λ̃12 (f)
∣

∣

∣

2









Gss (f)2
[

Cλ̃11 (f)Cλ̃22 (f)− ∣∣∣C̃λ̃12 (f)
∣

∣

∣

2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) +Gn2n2 (f)Cλ̃11 (f)
]

+Gn1n1 (f)Gn2n2 (f)









df

(4.179)
Equation (4.179) is the NP of x̃gmp,Π (·, ·) in terms of the transmitted signal, the

measurement noises, and the multipath model effects. Chapter 5 develops trends
using this result. The assumptions that led to the result in Equation (4.179) can
be summarized as follows. First, the received signal was modeled by a Gaussian
transmitted signal with multiple, delayed and attenuated signals in additive, Gaussian
noise observed for T seconds. Then, the stochastic nature of the received signal was
modeled through its spectral representation. This allowed the NP to be found in
the compact notation given in Equation (4.179). These results do not apply when a
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Gaussian probability density function is a poor approximation to fxgmp,Π(f,·); rather,
Equation (4.106) should be used under those conditions.

4.5 Summary
This chapter presented navigation potential (NP) using a very general stochas-

tic model whereby the transmitted signal is mapped into the received signal using
Equation (4.2), repeated here as

x (·, ·) � [ x1 (·, ·)x2 (·, ·)
]

=
[ g1 [·, ·; s (·, ·) , n1 (·, ·) , τ 1 (·)]
g2 [·, ·; s (·, ·) , n2 (·, ·) , τ 2 (·)]

]

(4.2)

The NP of a received signal was related to the Fisher Information Matrix in Equa-
tion (4.25), i.e.,

NP (x) �
(

∂h(θ)
∂θ I−1 (θ)

[∂h(θ)
∂θ
]T)−1

(4.25)

without limiting the mapping used. This novel outlook permits the designer to build
a model and have the tools for finding the NP of the received signal. (Graphically,
the signal model and navigation potential for Figure 7(a)−Box I from page 50 are
given by Equations (4.2) and (4.25), respectively.)

A multipath mapping whereby the received signal was modeled as the transmit-
ted signal, measurement noise, and multiple delayed and attenuated replicas of the
transmitted signal was introduced in Equations (4.40) and (4.41), repeated here for
all admissible t as

x1mp (t, ·) = s (t− τ 1 (t) , ·) + n1 (t, ·) +
+

N1
∑

l=1
αl (t, ·) s [t− τ 1 (t)− δl (t, ·) , ·] (4.40)
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x2mp (t, ·) = s (t− τ 2 (t) , ·) + n2 (t, ·) +
+

N2
∑

l=1
βl (t, ·) s [t− τ 2 (t)− εl (t, ·) , ·] (4.41)

The spectral representation for a finite-timelength observation of the multipath model
was found in Equation (4.48), repeated here for all admissible f as

x̃mp,Π (f, ·) =
















s̃Π (f, ·) e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

s̃Π (f, ·) e−j2πfτ2(ti)
(

1 +
N2
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

)

















+ ñΠ (f, ·)

(4.48)
This multipath representation enabled the NP to be expressed in the form given by
Equation (4.106), i.e.,

NP {x̃mp,Π (·)} = −

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ2)2

}

−E{∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}2

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}

+ E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ2)2

}

+2E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}

(4.106)
which is more explicit than the general case yet encompasses a wide range of problems.
This new result provided theory to quantify the ability to estimate a time difference
of arrival estimate in terms of the transmitted signal, the measurement noises, and
the multipath effects. (The signal model given by Equations (4.40) and (4.41),
and navigation potential given by Equation (4.106), are represented graphically by
Figure 7(a)−Box II.)
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Finally, the received signal was modeled as Gaussian in Equations (4.108) and
(4.109) by applying the assumptions given in the list on page 87. Equations (4.108)
and (4.109) are repeated here for all admissible t:

x1gmp (t, ·) = s (t− τ 1 (t) , ·) + n1 (t, ·)
+

N1
∑

l=1
αl (t, ·) s [t− τ 1 (t)− δl (t, ·) , ·] (4.108)

x2gmp (t, ·) = s (t− τ 2 (t) , ·) + n2 (t, ·)
+

N2
∑

l=1
βl (t, ·) s [t− τ 2 (t)− εl (t, ·) , ·] (4.109)

The spectral representation for a finite-timelength observation of the Gaussian re-
ceived signal, x̃gmp,Π (·, ·), was found in Equation (4.110) and repeated here for all
admissible f as

x̃gmp,Π (f, ·) =
















s̃Π (f, ·) e−j2πfτ1(ti)
(

1 +
N1
∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

)

s̃Π (f, ·) e−j2πfτ2(ti)
(

1 +
N2
∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)

)

















+ ñΠ (f, ·)

(4.110)
The NP of x̃gmp,Π (·, ·) was expressed in Equation (4.179) in terms explicitly associ-
ated with the transmitted signal, the measurement noises, and the multipath effects;
Equation (4.179) is repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)2
∣

∣

∣C̃λ̃12 (f)
∣

∣

∣

2









Gss (f)2
[

Cλ̃11 (f)Cλ̃22 (f)− ∣∣∣C̃λ̃12 (f)
∣

∣

∣

2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) +Gn2n2 (f)Cλ̃11 (f)
]

+Gn1n1 (f)Gn2n2 (f)









df

(4.179)
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(The signal model given by Equations (4.108) and (4.109) (or, equivalently, Equa-
tion (4.110)) and the NP given by Equation (4.179) are represented graphically by
Figure 7(a)−Box III.)

These new tools were intentionally not demonstrated in this chapter to stress the
general nature of the problem formulation used herein. This generalization permits
NP to apply to a wide class of problems. Chapter 5 will explore specific details and
trends that can be drawn from the developments in this chapter, and NP theory will
be used to evaluate specific problems.
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Chapter 5 - Predicting Performance Bounds with

Navigation Potential

5.1 Introduction
In this chapter, navigation potential (NP) theory developed in Chapter 4 is used

to predict the theoretical navigation performance bounds of several example signals.
These examples demonstrate that (1) current performance bounds are a special case
of the new NP theory, (2) NP may provide additional insight over other performance
bounds, and (3) the general nature of NP theory encompasses received signal models
for which no performance bounds were previously available.

Section 5.2 treats the case of a simplified signal model with no multipath (used to
introduce SOP in Chapter 3) as a special case ofNP theory, and shows that the theory
is consistent with previously derived results for this special case. Figure 9 represents
this example with Box “A” to show its relationship to the assumptions and other
examples. (Figure 9 is derived from Figure 7, given in Chapter 4 on page 50.) Using
this graphical aid, problems framed within Box “A” assume a TDOA measurement
model with the transmitted signal, measurement noise, and received signal all being
Gaussian, and no multipath present (i.e., N1 = N2 = 0).

The remaining sections apply NP theory to predict the theoretical GPS correla-
tion error performance bounds under more general conditions than used to generate
present performance bounds. In a typical GPS receiver [58], the time delay of the
incoming GPS signal incurred to travel from the transmitter to the receiver, denoted
by τ∆, is compared to the time delay of the internally generated signal, denoted by



x 1t = st + τ1  +∑
i=1

N1

α ist + τ1 + δi  + n1t

x 2t = st + τ2  +∑
i=1

N2

βist + τ2 + i + n2t

Multipath Model

TDOA Measurement Model

x 1t = st + τ1  +∑
i=1

N1

α ist + τ1 + δ i  + n1t

x 2t = st + τ2  + n2t

N2 = 0

Multipath Model: x1(t ) and x2(t ) Jointly Gaussian

x1t = st + τ1 + n1t
x2t = st + τ2 + n2t

N1 = 0

GPS Correlation Error 
Performance Prediction
With No Multipath

n2t = 0 st = GPS

GPS Correlation Error Performance 
Prediction for Gaussian Received Signal

x 1t = sGPSt + τ1  + n1t
x 2t = sGPSt + τ2 

x 1t  = sGPSt + τ1  + n1t +∑
i=1

N1

αisGPSt + τ1 + δi 

x 2t  = sGPSt + τ2 

I

II

III

A

B

2
1

x 1t = st + τ1  +∑
i=1

N1

α ist + τ1 + δi  + n1t

x 2t = st + τ2  +∑
i=1

N2

βist + τ2 + i  + n2t

x1t = g1t,ϖ; s, n1, τ 1
x2t = g2t,ϖ; s, n2, τ 2

  #   

  #   

Figure 9. Relationship of Navigation Potential Assumptions and Examples



τ∆|track. A GPS receiver uses a correlator to estimate the tracking error, τ∆−τ∆|track,
(which may be treated as a TDOA measurement) to track the incoming signal.

GPS correlation error performance bounds may be found using the NP-based
models shown graphically as Box “B” in Figure 9. As indicated by the location of
Box “B” in Figure 9, all examples within this class assume a TDOA measurement, a
multipath model, and a Gaussian transmitted signal in Gaussian noise. Furthermore,
the second “received” signal (actually, the signal internally generated by the second
receiver tracking purposes) exhibits no multipath or noise.

Two GPS correlation error performance bound prediction examples are discussed,
each with a different model of the received signal; namely, Section 5.3 assumes no
multipath is present in the received signals (Box “B1”), while Section 5.4 assumes
Gaussian received signals are composed of the transmitted signal, multipath, and
noise (Box “B2”). When appropriate, the NP results will be compared to previously
developed performance bounds.

While all of these examples are confined to a Gaussian transmitted signal in
Gaussian noise, NP theory is not limited to these types of signals and noise. Non-
Gaussian signals are included within the theory; however, the computational com-
plexity increases with non-Gaussian signals for which moments higher than second
order are considered. (See Section 4.3.) The presented examples represent a small
subset of the signals that may be analyzed with NP theory.

110



5.2 Navigation Potential for SOP-Based TDOA without Mul-
tipath

In this section, NP theory is used to evaluate SOP-based TDOA without multi-
path (a special case of the general results) in order to demonstrate that NP expres-
sions are consistent with previous performance bounds when properly constrained.
In particular, SOP-based TDOA navigation (as presented in detail in Chapter 3) es-
timates the difference in arrival times of the ith SOP at two receivers. A navigation
solution (as detailed in Section 3.3 in Chapter 3) may be obtained using N TDOA
estimates from N SOP using the same two receivers for each of the i = 1, 2, · · · , N
measurements. Figure 5 in Chapter 3 (page 41) presents the overall navigation sys-
tem, while Figure 6 in Chapter 3 (page 43) shows a geometric interpretation for a
single SOP-based TDOA measurement.

The remainder of this section presents (1) a time-domain model, and an equiva-
lent frequency-domain model, for SOP-Based TDOA without multipath, (2) the NP
of SOP-Based TDOA without multipath, and (3) a comparison of NP to previous
performance bounds.

5.2.1 Signal Model
NP theory may be applied to SOP-based TDOA without multipath through the

following time-domain model for all t (which is equivalent to Equations (3.8) and (3.9)
in Chapter 3 without notation to indicate the ith SOP):

x (t, ·) =
[ s (t, ·)
s [t + δbr (t, ·) , ·]

]
+ n (t, ·) (5.1)
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or
[ xb (t, ·)
xr (t, ·)

]
=

[ s (t, ·)
s [t + δbr (t) , ·]

]
+

[ nb (t, ·)
nr (t, ·)

]
(5.2)

The signal, s (·, ·), the measurement noise at the base station, nb (·, ·), and the mea-
surement noise at the rover, nr (·, ·), are mutually independent, zero-mean, ergodic,
wide-sense stationary, Gaussian stochastic processes with known power spectral den-
sities:

Gss (f) , Gnbnb (f) , Gnrnr (f)

Furthermore, δbr (·) is the time difference of arrival of the signal at the base station
relative to the rover (modeled as constant over a finite-timelength observation interval,
[ti − T

2 , ti + T
2
] ⊂ R1).

A frequency-domain model may be found, as in Equation (4.125), for all admis-
sible f as

x̃Π (f, ·) = s̃Π (f, ·)E (f) λ̃ (f, ·) + ñΠ (f, ·) (5.3)

where s̃Π (·, ·) is the spectral representation of s (·, ·) defined, as in Equation (4.49),
for all admissible f as

s̃Π (f, ·) � F { 1
T

∏(t− ti
T

)
s (t, ·)} (5.4)

and ñΠ (f, ·) is the spectral representation of n (·, ·) defined, as in Equation (4.50),
for all admissible f as

ñΠ (f, ·) � F { 1
T

∏(t− ti
T

)
n (t, ·)} (5.5)

112



Furthermore, the matrix which contains the delays incurred by the signal to travel to
each receiver, E (f), is defined for all admissible f as

E (f) �
[ 1 0

0 e−j2πfδbr(ti)
]

(5.6)

An analogous result using Equation (4.126) may be found using

τ 1 (ti) � 0 (5.7)

τ 2 (ti) � −δbr (ti) (5.8)

and, consequently, the statistics of x̃Π (·, ·) are a function of the time difference
τ 1 (ti) − τ 2 (ti) = δbr (ti) only. The final segment of the frequency-domain model
is the multipath effect matrix, λ̃ (f, ·), defined for all admissible f as (see also Equa-
tion (4.127))

λ̃ (f, ·) � [ 1
1
]

(5.9)

In this case, the autocorrelation matrix for λ̃ (f, ·) is (see also Equation (4.136))

C̃λ̃ (f) � E
{
λ̃ (f, ·) [λ̃ (f, ·)]H}

(5.10)

=
[ 1 1

1 1
]

(5.11)
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5.2.2 Navigation Potential
In general, the NP of x̃ (·, ·) for a Gaussian received signal modeled with a mul-

tipath mapping is given through Equation (4.179) and repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)2
∣∣∣C̃λ̃12 (f)

∣∣∣
2




Gss (f)2

[
Cλ̃11 (f)Cλ̃22 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) + Gn2n2 (f)Cλ̃11 (f)]
+Gn1n1 (f)Gn2n2 (f)





df

(4.179)
SOP-based TDOA NP for the “no multipath” case (as represented by Box “A” of
Figure 9) may be found using Equation (4.179) with the frequency-domain model
given in the previous subsection:

NP (x) = T
∫ +∞

−∞

(2πf)2Gss (f)2 (1)



Gss (f)2 (0)

+Gss (f) [(1)Gnbnb (f) + (1)Gnrnr (f)]
+Gnbnb (f)Gnrnr (f)





df (5.12)

Simplifying,

NP (x) = T
∫ +∞

−∞
(2πf)2Gss (f)2

Gss (f) [Gnbnb (f) + Gnrnr (f)] + Gnbnb (f)Gnrnr (f)df (5.13)

5.2.3 NP Comparison with Other Performance Bounds
NP is shown to be consistent with previous performance bounds for this case.

Under the scalar case (with respect to the parameters being estimated), the NP is
related to the Cramer Rao lower bound (CRLB) of any unbiased estimate of δbr,
denoted by Cδ̂br , through Equation (4.26):

NP (x) � (Cδ̂br
)−1 (5.14)
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Thus, Cδ̂br for SOP-based TDOA measurements (using the NP (x) found in Equa-
tion (5.13)) is given by

Cδ̂br =
(

T
∫ +∞

−∞
(2πf)2Gss (f)2

Gss (f) [Gnbnb (f) + Gnrnr (f)] + Gnbnb (f)Gnrnr (f)df
)−1

(5.15)

Using a model with the same restrictions, the CRLB for SOP-based TDOA
measurements may be found through Equation (3.39) as

Cδ̂br
∣∣
p =



T
∫ ∞

−∞

(2πf)2
∣∣∣γ̃xibxir (f)

∣∣∣
2

1 − ∣∣∣γ̃xibxir (f)
∣∣∣
2 df





−1

(5.16)

where |p indicates “previous” results (see [44]) and the coherence magnitude squared,
∣∣γ̃xbxr (f)∣∣2, was defined in Equation (3.21) and repeated here as

∣∣∣γ̃xibxir (f)
∣∣∣
2 �

∣∣∣G̃xibxir (f)
∣∣∣
2

∣∣∣G̃xibxib (f) G̃xirxir (f)
∣∣∣

(3.21)

Note that

G̃xbxr (f) = Gss (f) e−j2πfδbr (3.25)

Gxbxb (f) = Gss (f) + Gnbnb (f) (3.26)

Gxrxr (f) = Gss (f) + Gnrnr (f) (3.27)
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(Since s (t) and n (t) are real-valued,Gss (f) andGnn (f) are real-valued functions [68]).
Now, Cδ̂br

∣∣
p given by Equation (5.16) may be written as

Cδ̂br
∣∣
p =



T
∫ ∞

−∞

(2πf)2
∣∣∣γ̃xibxir (f)

∣∣∣
2

1 − ∣∣∣γ̃xibxir (f)
∣∣∣
2 df





−1

(5.17)

=


T
∫ ∞

−∞

(2πf)2
∣∣∣G̃xbxr (f)

∣∣∣
2

∣∣∣G̃xbxb (f) G̃xrxr (f)
∣∣∣− ∣∣∣G̃xbxr (f)

∣∣∣
2df





−1

(5.18)

=
(
T
∫ ∞

−∞
(2πf)2Gss (f)2

[Gss (f) + Gnbnb (f)] [Gss (f) + Gnrnr (f)] −Gss (f)2df
)−1

(5.19)

=
(

T
∫ ∞

−∞
(2πf)2Gss (f)2

Gss (f) [Gnbnb (f) + Gnrnr (f)] + Gnbnb (f)Gnrnr (f)df
)−1

(5.20)

This matches the CRLB predicted through NP theory, i.e.,

Cδ̂br
∣∣
p = Cδ̂br (5.21)

in which Cδ̂br
∣∣
p is the CRLB given by previous results and Cδ̂br is the CRLB found

in Equation (5.15) by restricting NP theory to the simplified SOP-based TDOA, no
multipath case (represented in Figure 9 with Box “A”).

5.3 Predicting GPS Correlation Error Performance Bounds with
Navigation Potential

The theoretical navigation potential (NP) developed in Chapter 4 may be applied
to many different kinds of signals. This section applies NP theory to the Global
Positioning System (GPS) signal with no multipath present. In this respect, NP
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will be used to describe the ability to determine the pseudorange of a GPS signal by
predicting GPS correlation error performance bounds. The overall GPS problem set
is represented in Figure 9 with Box “B”. This section addresses problems for which
the assumptions represented by Box “B1” in Figure 9 apply.

Section 5.3.1 presents the GPS signal model used in this derivation. Then,
Section 5.3.2 develops the theoretical NP for GPS as a new way to characterize
GPS correlation error performance bounds. Finally, Section 5.3.3 compares this new
characterization to performance bounds developed previously.

5.3.1 GPS Signal Structure
This section overviews the GPS signal structure used in subsequent analyses.

The signal received at the transmitter is modeled as

x (t) = s (t) + n (t) (5.22)

where s (t) is the received GPS signal and n (t) represents additive, white, Gaussian
noise. The noise is assumed ergodic and independent of s (t) with the noise strength,
No, given as [53]

No = −201 dBW
Hz (5.23)

The power spectral density of the noise is constant over all frequencies, with value

Gnn (f) = No
2 (5.24)
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Assuming the Doppler frequency shift is removed by a separate carrier tracking algo-
rithm, the coarse acquisition (C/A) part of the GPS signal is [58]

s (t) = √2Pave d (t) c (t) cos (2πfot) (5.25)

where

Pave � average received signal power at the antenna (5.26)

≥ −160 dBW (specified) (5.27)

≈ −157 dBW (typical) (5.28)

fo � carrier frequency (5.29)

= 1575.42 MHz (L1 band) (5.30)

and d (t) and c (t) are pseudo-random binary waveforms (PRBW) with the following
data (Rd) and code (Rc) rates:

Rd = 50 bits
sec � 1

Td
(5.31)

Rc = 1.023 Mbits
sec � 1

Tc
(5.32)

Since Rc = NRd where N ∈ Integers and d (t) and c (t) are chip-synchronous, a new
PRBW, g (t), may be defined as

g (t) � d (t) c (t) (5.33)

with a data rate

Rg = Rc = 1
Tc

(5.34)
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Using g (t), the coarse acquisition (C/A) part of the GPS signal is

s (t) = √2Pave g (t) cos (2πfot) (5.35)

The envelope of the power spectral density of s (t) given in Equation (5.35) can be
found in a straightforward manner as [58]

Gss (f) = PaveTc
2

{sinc2 [(f − fo)Tc] + sinc2 [(f + fo)Tc]} (5.36)

Equations (5.24) and (5.36) represent the noise and signal power spectral den-
sities and are defined over all frequencies. Typically, the incoming signal and noise
are bandlimited with a bandwidth B centered about the carrier frequency fo. In this
case, the signal and noise power spectral densities can be represented as

Gss (f) = PaveTc2 {sinc2 [(f − fo)Tc] + sinc2 [(f + fo)Tc]}
∀ |f | ∈ [fo − B

2 , fo + B
2
] (5.37)

and

Gnn (f) = No
2 ∀ |f | ∈ [

fo − B
2 , fo + B

2
]

(5.38)

A more accurate (and more complex) bandlimited signal model might represent
the bandlimited signal as the original signal affected by attenuation, frequency rolloff,
harmonics, etc. Also, s (t) is actually periodic, not random. (However, its mean and
autocorrelation function exhibit properties that permit it to be treated as random
– termed pseudo-random.) The periodic nature of s (t) results in Gss (f) being
composed of spectral lines. The spectral lines are spaced at the code repeat rate and
follow the envelope given in Equation (5.36).
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5.3.2 Theoretical GPS NP
This subsection applies NP theory to the GPS signal. First, GPS receiver

architecture is fit into the mappings used to developed NP theory. Second, the NP
for GPS signals is found using the GPS signal structure presented in the previous
subsection.

5.3.2.1 Applying GPS to an NP Theory Mapping Model. The
theoretical NP is related to the theoretical minimum mean squared error of a TDOA
estimate of two received signals. In a typical GPS receiver, the time delay of the
received signal as compared to an internally generated signal is found through cross
correlation within a delay lock loop [58]. The delay lock loop process may be modeled
by choosing x1 as a delayed received signal defined in Equation (5.22) and x2 as an
internally generated signal, written as

x1 (t) = s (t− τ∆) + n (t) (5.39)

x2 (t) = s (t− τ∆|track) (5.40)

where s (t) represents the GPS signal, n (t) represents the measurement noise, τ∆ rep-
resents the time delay of the received GPS signal incurred to travel from the trans-
mitter to the receiver, and τ∆|track is the time delay of the internally generated signal.
A GPS receiver uses an estimate of the tracking error, [τ∆ − τ∆|track], to track the
incoming signal. Analogously, this tracking error may be treated as a TDOA mea-
surement. Furthermore, it is assumed that noise on the internally generated signal
can be neglected, and that the internally generated signal is identical in structure to
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the transmitted signal. The overall navigation performance of the GPS depends, in
part, upon system geometry, the satellite signals’ synchronization accuracy, and the
ability to track (i.e., the ability to estimate the tracking error of) each incoming sig-
nal. System geometry and satellite synchronization are factors that affect the overall
navigation solution, while the underlying navigation potential of a single GPS signal
rests upon how well the tracking error can be estimated. Thus, the NP of estimat-
ing [τ∆ − τ∆|track] given x1 and x2 may well characterize the GPS correlation error
performance.

The time delay estimate in GPS is found by comparing the received signal to an
internally generated signal; this same approach can be fit into the NP theory derived
in Chapter 4. In doing this, GPS correlation error performance bounds may be
described through the scalar-case NP found in Equation (4.27), and repeated here
as

NP (x) = I (τ̂ e) (4.27)

where

x =
[ x1x2

]
(5.41)

is composed of the received signal, x1, and the internally generated signal, x2, and τ̂ e

is an unbiased estimate of

τ e � τ∆ − τ∆|track (5.42)

Let x1 and x2 be modeled through Equations (5.39) and (5.40) with the following
known power spectral densities: Gss (f) as given by Equation (5.37), Gnbnb (f) �
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Gnn (f) as given by Equation (5.38), and Gnrnr (f) = 0. Now, the NP is given
through Equation (5.13) as

NP (x) = T
∫ +∞

−∞
(2πf)2 Gss (f)2

Gss (f) [Gnn (f)]df (5.43)

= T
∫ +∞

−∞
(2πf)2 Gss (f)

Gnn (f)df (5.44)

where T , the finite-timelength observation duration, may be equated to the process
integration time for a GPS correlator [60]. Consistent with the derivation of Equa-
tion (5.13), Equation (5.44) also assumes Gnn (f) �= 0 is satisfied. This condition is
satisfied if noise is present at all frequencies over which the integral is taken. The re-
mainder of this subsection uses Gss (f) and Gnn (f) to solve for an explicit expression
for GPS NP.

5.3.2.2 Explicit Expression for GPS NP. The bandlimited power spec-
tral densities given in Equations (5.37) and (5.38) may be used in Equation (5.44) to
solve for an explicit expression for GPS NP. In the bandlimited case, the limits of
integration in Equation (5.44) become

NP (x) = T
[∫ −fo+B

2

−fo−B
2

(2πf)2 Gss (f)
Gnn (f)df +

∫ fo+B
2

fo−B
2

(2πf)2 Gss (f)
Gnn (f)df

]

(5.45)

Since Gnn (f) = No2 � Gnn is independent of f , Equation (5.45) may be written as

NP (x) = T
Gnn

[∫ −fo+B
2

−fo−B
2

(2πf)2Gss (f) df +
∫ fo+B

2

fo−B
2

(2πf)2Gss (f) df
]

(5.46)

122



Furthermore, since Gss (f) is even symmetric in f , (2πf)2Gss (f) is also even sym-
metric in f . Using the identity

∫ −fo+B
2

−fo−B
2

(2πf)2Gss (f) df =
∫ fo+B

2

fo−B
2

(2πf)2Gss (f) df (5.47)

Equation (5.46) may be rewritten as

NP (x) = 2T
Gnn

∫ fo+B
2

fo−B
2

(2πf)2Gss (f) df (5.48)

Substituting the bandlimited power spectral densities given in Equations (5.38)
and (5.37) into Equation (5.48),

NP (x) = 2T
No2

∫ fo+B
2

fo−B
2

(2πf)2
(PaveTc

2
){sinc2 [(f − fo)Tc] + sinc2 [(f + fo)Tc]} df

(5.49)

NP (x) = 2PaveTcT
No

∫ fo+B
2

fo−B
2

(2πf)2 {sinc2 [(f − fo)Tc] + sinc2 [(f + fo)Tc]} df
(5.50)

Given the fo and Tc for GPS and the limits of integration in Equation (5.50),

sinc2 [(f − fo)Tc] 
 sinc2 [(f + fo)Tc] (5.51)

Thus, Equation (5.50) can be approximated as

NP (x) ≈ 2PaveTcT
No

∫ fo+B
2

fo−B
2

(2πf)2 sinc2 [(f − fo)Tc] df (5.52)
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Changing the variable of integration, let g � f − fo so that f = g + fo and dg = df .
The limits of integration become

f = fo − B
2 ⇒ g = −B

2 (5.53)

f = fo + B
2 ⇒ g = +B

2 (5.54)

Now, Equation (5.52) becomes

NP (x) ≈ 2PaveTcT
No

∫ +B
2

−B
2

[2π (g + fo)]2 sinc2 (Tcg) dg (5.55)

≈ 8PaveTcT
No

∫ +B
2

−B
2

π2 (g2 + 2gfo + f 2
o
) sinc2 (Tcg) dg (5.56)

≈ 8PaveTcT
No




1
T 2c

∫ +B
2

−B
2

sin2 (πTcg) dg
︸ ︷︷ ︸

A

+

+2π2fo
∫ +B

2

−B
2

g · sinc2 (Tcg) dg
︸ ︷︷ ︸

B

+

+ π2f 2
o

∫ +B
2

−B
2

sinc2 (Tcg) dg
︸ ︷︷ ︸

C



 (5.57)

As an aid, three terms in Equation (5.57) are specified as A, B, and C.
First, consider A. Note that sin2α = 1−cos(2α)

2 , sin (−α) = −sin (α).

A = 1
T 2c

∫ +B
2

−B
2

sin2 (πTcg) dg = 1
T 2c

∫ +B
2

−B
2

[1
2 − cos (2πTcg)

2
]
dg (5.58)

= 1
T 2c

[
B
2 − ∫ +B

2

−B
2

cos (2πTcg)
2 dg

]
= 1

T 2c

[
B
2 − 1

4πTc
sin (2πTcg)

∣∣∣∣
+B

2

−B
2

]
(5.59)

= 1
T 2c

[B
2 − 1

2πTc
sin (πTcB)

]
(5.60)
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Notice that, if BTc = k, where k ∈ Integers, then A = k
2T 3c . (This constraint is not

made at this point in the development.)
Consider B. Note that ∫ +β

−β x · sinc2 (αx) dx = 0, since x is an odd function,
sinc2 (·) is an even function, and the limits of integration are equidistant from zero.
Thus,

B = 2π2fo
∫ +B

2

−B
2

g · sinc2 (Tcg) dg (5.61)

= 0 (5.62)

Consider C.

C = π2f 2
o

∫ +B
2

−B
2

sinc2 (Tcg) dg = π2f 2o
Tc

[
Tc

∫ +B
2

−B
2

sinc2 (Tcg) dg
]

(5.63)

= π2f 2o
Tc

Asinc2 (B) (5.64)

where Asinc2 (B) is the area under a sinc2 (·) function defined as

Asinc2 (B) � Tc
∫ +B

2

−B
2

sinc2 (Tcx) dx (5.65)

Furthermore, the dependence upon the bandwidth B is shown explicitly. In general,
Tc is fixed for the C/A code of GPS (and given through Equation (5.32)), while B
may vary, depending upon the receiver. Given B (or B as a function of Tc), the area
can be determined; e.g.,

Asinc2
(0.85

Tc

) ≈ 0.900 (5.66)

Asinc2
( 1
Tc

) ≈ 0.902 (5.67)

Asinc2
( 2
Tc

) ≈ 0.949 (5.68)
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Equation (5.57) can now be written as

NP (x) ≈ 8PaveTcT
No

(A + B + C) (5.69)

≈ 8PaveTcT
No

( 1
T 2c

[B
2 − 1

2πTc
sin (πTcB)

]
+π2f 2o

Tc
Asinc2 (B)

)
(5.70)

≈ 8PaveT
No

[ B
2Tc

− 1
2πT 2c

sin (πTcB) +π2f2
oAsinc2 (B)

]
(5.71)

Equation (5.71) is the NP for estimating τ e from a GPS signal (in sec−2). This
result, and the procedure used to find it, are novel. In the next subsection, this new
result will be analyzed as a design tool.

5.3.3 Analyzing the Theoretical GPS NP
The GPS correlation error performance is given in terms of the NP in Equa-

tion (5.71). If the signal-to-noise ratio is assumed to be fixed, the only parameters
that an end user may vary are the bandwidth, B, and the process integration time
(or observation interval), T . Clearly, NP (x) is linear in T , i.e., NP (x) increases in
direct proportion to an increase in the process integration time. A necessary condi-
tion for NP (x) to be linear in T is that the time delays are constant over the interval
[ti − T

2 , ti + T
2
]. (See page 70.) From a practical standpoint, as T increases, it is

more difficult integrate over the period T and more difficult to satisfy the assumption
that the time delays are constant over the interval T . Thus, an engineering trade-off
of performance versus implementation practicality should be employed when selecting
T .

The NP for C/A GPS at L1 as B varies is shown in Figure 10. This plot was
generated using NP (x) given in Equation (5.71) with the following values given in
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Section 5.3.1:

Pave = −157 dB W (5.72)

No = −201 dB W
Hz (5.73)

Tc = 1.023 µsec (5.74)

fo = 1575.42 MHz (5.75)

The process integration time was chosen consistent with typical values as

T = 1 msec (5.76)

The subplots in Figure 10 represent (from top to bottom) the NP for GPS, the
change in NP relative to a change in bandwidth, and the equivalent predicted error
in an estimate of τ e. The error was computed as

error � c
√

[NP (x)]−1 (5.77)

where c is the propagation speed of the signal (2.997 × 108 m/sec).
Notice that, for B � 1.7 MHz, the navigation potential shown in Figure 10

tends to flatten. Thus, choosing B = 1.7 MHz would capture much of the naviga-
tion potential while freeing resources for other uses or reducing the monetary cost
of the receiver over that of a higher bandwidth receiver (assuming monetary cost is
proportional to the bandwidth). One caveat to this analysis is that the autocorrela-
tion function is found at all time delays. Many practical implementations determine
(suboptimally) the autocorrelation at selected time delays (rather than at all time
delays) using correlators. It has been demonstrated that, when the autocorrelation
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is found for only a selected number of time delays, performance may be substantially
improved by using bandwidths much greater than B = 1.7 MHz in conjunction with
narrowly spaced correlators [60].

Finally, the error shown in Figure 10 represents the theoretically achievable error
limits. At B = 1.7 MHz, this corresponds to an error of 4.5 mm. If the GPS signal is
down-converted for a more practical implementation, the error would increase. (For
a particular fo, Equation (5.71) may be used to determine the NP (x).)

5.3.4 GPS NP Comparison with Other GPS Performance Bounds
While NP (x) given in Equation (5.71) is novel, some analysis exists from which

a comparison can be made. Previous work treats the GPS signal in terms of the
carrier-only effects and code-only effects. Carrier-only analyses neglect the effects
of g (t) (i.e., set g (t) ≡ 1 ∀t) in the GPS signal given by Equation (5.35). Code-only
analyses neglect the effects of the carrier (i.e., set fo ≡ 0) in the GPS signal given by
Equation (5.35).

5.3.4.1 Carrier-Only GPS Correlation Error Performance Bounds.
Spilker [58] found the Cramer Rao Lower Bound (CRLB) of the GPS signal at carrier
frequency as

(σε)2∣∣carrier ≈ 1
SNR

1
∆ω2 (5.78)

where |carrier denotes the bound is for the carrier-only portion and ∆ω2 is known as
the Gabor bandwidth given by [58]

∆ω2 �
∫ +∞

−∞
ω2Gss (f) df (5.79)
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While only the effects from the carrier are analyzed, the bandwidth used is as if C/A
code were present, i.e.,

B = 2.046 MHz (5.80)

For the bandwidth given in Equation (5.80), the Gabor bandwidth is

∆ω2 = 4π2f2
o (5.81)

Therefore, the CRLB for carrier-only GPS is

(σε)2∣∣carrier ≈ 1
SNR

1
∆ω2 (5.82)

≈ 1
4π2f 2o · SNR (5.83)

A similar result can be found using the NP (x) given in Equation (5.71). Rather
than re-derive the results with g (t) ≡ 1 ∀t in the GPS signal given by Equation (5.35),
an equivalent result is to let Tc → ∞ (while maintaining the bandwidth given in
Equation (5.80)). Reinserting the definition for Asinc2 (B) in Equation (5.65) into
Equation (5.71) while letting B = 2.046 MHz and Tc → ∞, the carrier-only NP for
GPS is

NP (x)|carrier = limTc→∞
8PaveT
No

{ B
2Tc

− 1
2πT 2c

sin (πTcB) +

+ π2f 2
o

[
Tc

∫ +B
2

−B
2

sinc2 (Tcx) dx
]}

(5.84)
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The first two terms within the {·} go to zero as Tc → ∞, and the factor contributed
by Asinc2 (B) goes to unity as Tc → ∞, i.e., (note that B is fixed and finite)

limTc→∞
B

2Tc
= 0 (5.85)

limTc→∞
1

2πT 2c
sin (πTcB) = 0 (5.86)

limTc→∞

[
Tc

∫ +B
2

−B
2

sinc2 (Tcx) dx
]

= 1 (5.87)

Thus, the carrier-only GPS NP is given by

NP (x)|carrier = 8PaveT
No

(π2f 2
o
) (5.88)

Using the identity,

SNR = Pave
No2 Bn

(5.89)

where Bn is the “equivalent noise bandwidth” approximated as [60]

Bn ≈ 1
T (5.90)

it follows that

SNR ≈ 2PaveT
No

(5.91)

Substituting Equation (5.91) into Equation (5.88), the NP for carrier-only GPS may
be written as

NP (x)|carrier ≈ 4π2f2
o · SNR (5.92)
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Finally, the NP is related to the CRLB of any unbiased estimate of τ e|carrier, denoted
by Cτ̂e |carrier, through Equation (4.26):

NP (x)|carrier � (Cτ̂e |carrier)−1 (5.93)

Thus, CRLB for carrier-only GPS as computed through NP theory is

Cτ̂e|carrier ≈ 1
4π2f 2o · SNR (5.94)

demonstrating that the existing carrier-only bound (given in Equation (5.83)) is a
special case of the NP.

5.3.4.2 Code-Only GPS Correlation Error Performance Bounds.
Spilker also gives the following performance bound for code-only GPS correlation
error performance: [58]

(σε
Tc

)2 ≈ NoBn
2Pave

(δT
Tc

)
(5.95)

where the bound is denoted as code-only with |code and a receiver bandwidth, B,
given by

B � 2
Tc

(5.96)

is used to derive the result given. Furthermore, the signal’s PRBW is modeled as a
trapezoidal waveform with the rise time, δT . Practical PRBWs cannot have zero-rise
time; a trapezoidal waveform is one method to account for this. The NP development
modeled practical PRBWs as bandlimited by B. The relationship of rise time to
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bandwidth depends upon the definition of each, but a general rule of thumb is [58]

δT ≈ 1
2B (5.97)

Substituting Equation (5.97) into Equation (5.95) and rearranging terms yields

(σε)2∣∣code ≈ NoBnTc
4PaveB (5.98)

NP theory can be constrained to treat code-only GPS which is bandlimited by a
specific bandwidth. Code-only effects may be considered by setting fo ≡ 0 in NP (x)
given in Equation (5.71):

NP (x)|code ≈ 8PaveT
No

[ B
2Tc

− 1
2πT 2c

sin (πTcB)
]

(5.99)

Furthermore, using the bandwidth, B, given in Equation (5.96), the sine term in
Equation (5.99) becomes

sin (πTcB) = sin
[
πTc

( 2
Tc

)]
= 0 (5.100)

Therefore, Equation (5.99) may be written as

NP (x)|code ≈ 4PaveB
No

T
Tc

(5.101)

Using Equation (5.90), the specific case for code-only GPS is

NP (x)|code ≈ 4PaveB
NoBnTc

(5.102)

Finally, the NP is related to the CRLB through Equation (4.26):

NP (x)|code � (Cτ̂e |code)−1 (5.103)
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Thus, CRLB for code-only GPS as computed through NP theory is

Cτ̂e|code ≈ NoBnTc
4PaveB (5.104)

demonstrating that the existing code-only bound (given in Equation (5.98)) is also a
special case of the NP.

5.3.4.3 NP-Based GPS Correlation Error Performance Bounds.
One distinct advantage in NP over other performance bounds is that the relationship
of code and carrier performance is more readily available. For this example, using
NP (x) given in Equation (5.71) with Equations (5.92) and (5.102) yields

NP (x) ≈ NP (x)|code + NP (x)|carrier (5.105)

This insight is the result of NP theory applied to the specific problem of predicting
GPS correlation error performance bounds and cannot be gained through previous
performance bounds. (Also, NP (x) given in Equation (5.71) is not limited to specific
values for Tc or B.)

Additionally, NP is not intrinsically tied to the GPS signal structure. The
results from this GPS example may be readily applied to other code-division multiple
access (CDMA), spread spectrum signals such as those used in many current cellular
phone systems [26].

5.4 Multipath GPS (Gaussian Received Signal)
The navigation potential (NP) theory developed in Chapter 4 is not limited

to the relatively simplified models in the preceding sections. NP theory may also
be used to predict Global Positioning System (GPS) correlation error performance
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bounds when the received signal contains multipath signals. No performance bound
for a correlation process in the presence of multipath is known to exist. This section
addresses GPS correlation error performance for the case of the received signal con-
taining multipath signals and being appropriately modeled with a Gaussian received
signal. (These assumptions are depicted graphically in Box “B2” of Figure 9.)

First, the GPS signal model with multipath effects is presented. Then, an NP
expression for this case is found. (Unlike preceding sections, since no comparable
bound exists for this problem, a comparison to previous work cannot be made.)

5.4.1 Signal Model
This subsection develops a signal model whereby NP theory may be used to pre-

dict GPS correlation error performance bounds when the received signal5 is modeled
as a Gaussian stochastic process composed of the transmitted GPS signal, measure-
ment noise, and multipath signals.

The time-domain GPS multipath signal is modeled with the received signal,
xmp (·, ·), given by

xgmp (·, ·) =
[ xgmp1 (·, ·)
xgmp2 (·, ·)

]
(5.106)

where, for all admissible t,

xgmp1 (t, ·) = s [t− τ∆ (t) , ·] + n (t, ·)
+α (t, ·) s [t− τ∆ (t) − δ (t, ·) , ·] (5.107)

xgmp2 (t, ·) = s [t− τ∆|track (t) , ·] (5.108)

5The GPS signal and noise structures were reviewed in Section 5.3.1, and the justification for using a
TDOA-like formulation for GPS was given in Section 5.3.2.
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The GPS signal, s (·, ·) and the measurement noise, n (·, ·), are modeled as indepen-
dent, zero-mean, ergodic, wide-sense stationary, Gaussian stochastic processes with
known power spectral densities, Gss (f) and Gnn (f), given in Equations (5.37) and
(5.38), respectively. The delay, τ∆ (·), is the delay incurred by the GPS signal to
travel from the transmitter to the receiver. The tracking delay, τ∆|track (·) is varied
through the internally generated GPS signal. The desired parameter estimate is

τ e (·) = τ∆ (·) − τ∆|track (·) (5.109)

A single multipath signal is modeled with an attenuation stochastic process, α (·, ·),
and delay stochastic process, δ (·, ·). Finally, xgmp (·, ·) is assumed to be appropriately
modeled as an ergodic, wide-sense stationary, Gaussian stochastic process.

A frequency-domain model may be found, as in Equation (4.125), for all admis-
sible f as

x̃gmp,Π (f, ·) = s̃Π (f, ·)E (f) λ̃ (f, ·) + ñΠ (f, ·) (5.110)

where s̃Π (·, ·) is the spectral representation of s (·, ·) defined, as in Equation (4.49),
for all admissible f as

s̃Π (f, ·) � F { 1
T

∏(t− ti
T

)
s (t, ·)} (5.111)

and ñΠ (f, ·) is the spectral representation of n (·, ·) defined, as in Equation (4.50),
for all admissible f as

ñΠ (f, ·) � [ F { 1
T
∏( t−ti

T
)n (t, ·)}

0
]

(5.112)

136



Furthermore, a matrix which contains the “time delays”, E (f), is defined for all
admissible f as

E (f) �



e−j2πfτ∆(ti) 0

0 e−j2πf τ∆|track(ti)



 (5.113)

Finally, the multipath effect matrix, λ̃ (f, ·), is defined (see also Equation (4.127)) for
all admissible f as

λ̃ (f, ·) �



1 + α (ti, ·) e−j2πfδ(ti,·)

1



 (5.114)

In this case, the autocorrelation matrix for λ̃ (f, ·) is (see also Equation (4.136))

C̃λ̃ (f) � E
{
λ̃ (f, ·) [λ̃ (f, ·)]H}

(5.115)

(5.116)

=



C̃λ̃11 (f) C̃λ̃12 (f)
C̃λ̃12 (f)∗ C̃λ̃22 (f)



 (5.117)

The 1 − 1 element of C̃λ̃ (f) is given by

C̃λ̃11 (f) = E {[1 + α (ti, ·) e−j2πfδ(ti,·)] [1 + α (ti, ·) e+j2πfδ(ti,·)]} (5.118)

= E {1 + α (ti, ·) e−j2πfδ(ti,·) + α (ti, ·) e+j2πfδ(ti,·) + α (ti, ·)2} (5.119)

Noting that, for any complex-valued ã,

ã + ã∗ = 2 Re {ã} (5.120)

and interchanging Re {} and E {},
C̃λ̃11 (f) = 1 + 2 Re{E [α (ti, ·) e−j2πfδ(ti,·)]} + E [α (ti, ·)2] (5.121)
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Evaluating the 2 − 2 element of C̃λ̃ (f),

C̃λ̃22 (f) = 1 (5.122)

Finally, evaluating the 1 − 2 element of C̃λ̃ (f),

C̃λ̃12 (f) = E {1 + α (ti, ·) e−j2πfδ(ti,·)} (5.123)

= 1 + E {α (ti, ·) e−j2πfδ(ti,·)} (5.124)

and
∣∣∣C̃λ̃12 (f)

∣∣∣
2 = 1 + 2 Re{E [α (ti, ·) e−j2πfδ(ti,·)]} +

+E {α (ti, ·) e−j2πfδ(ti,·)}E {α (ti, ·) e−j2πfδ(ti,·)}∗ (5.125)

An interesting subclass of problems results when α (·, ·) and δ (·, ·) may be as-
sumed independent. One example of this is when the attenuation does not depend
upon the additional distance traveled, but is dependent upon the scattering and ab-
sorption of the reflecting material. (See the discussion surrounding Table 1 on page 67
for a more complete discussion on the physical interpretation of attenuation and delay
processes.)

When α (·, ·) and δ (·, ·) may be assumed independent, the multipath effect ma-
trix, λ̃I (f, ·), is denoted with an I to indicate the independence assumption, and the
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autocorrelation matrix for λ̃I (f, ·), is

C̃λ̃I (f) � E
{
λ̃I (f, ·) [λ̃I (f, ·)]H}

(5.126)

=
[ C̃λ̃I,11 (f) C̃λ̃I,12 (f)
C̃λ̃I,12 (f)∗ C̃λ̃I,22 (f)

]

(5.127)

Define the mean, µα(·,·) (·), and variance, σ2
α(·,·) (·), of α (·, ·) for all admissible t as

µα(·,·) (t) � E {α (t, ·)}

σ2
α(·,·) (t) � E

{[α (t, ·) − µα(·,·) (t)]2
}

(5.128)

= E {α2 (t, ·)}− µ2
α(·,·) (t) (5.129)

Define the mean of δ (·, ·), µδ(·,·) (·), for all admissible t as

µδ(·,·) (t) � E {δ (t, ·)}
Using Equation (5.121),

C̃λ̃I,11 (f) = 1 + 2 Re{E [α (ti, ·) e−j2πfδ(ti,·)]} + E [α2 (ti, ·)] (5.130)

= 1 + 2µα(·,·) (ti) Re [e−j2πfµδ(·,·)(ti)] + σ2
α(·,·) (ti) − µ2

α(·,·) (ti) (5.131)

= 1 + 2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)] + σ2
α(·,·) (ti) − µ2

α(·,·) (ti) (5.132)
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Using Equation (5.124),

C̃λ̃12 (f) = 1 + E {α (ti, ·) e−j2πfδ(ti,·)} (5.133)

= 1 + µα(·,·) (ti) e−j2πfµδ(·,·)(ti) (5.134)

= 1 + µα(·,·) (ti){cos [2πfµδ(·,·) (ti)]− jsin [2πfµδ(·,·) (ti)]} (5.135)

= 1 + µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]

−jµα(·,·) (ti) sin [2πfµδ(·,·) (ti)] (5.136)

Notice that Equation (5.136) is the form: Re {}+j Im {}. Rewriting Equation (5.136)
in magnitude-phase form,

C̃λ̃12 (f) = M · e
(

tan−1
{

µα(·,·)(ti)sin[2πfµδ(·,·)(ti)]
1+µα(·,·)(ti) cos[2πfµδ(·,·)(ti)]

})

(5.137)

where

M �
√√√√√

{1 + µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]}2

+{µα(·,·) (ti) sin [2πfµδ(·,·) (ti)]}2
(5.138)

Expanding and combining terms, Equation (5.138) becomes

M =

√√√√√√√√

1 + 2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]

+µα(·,·) (ti)2
{

cos [2πfµδ(·,·) (ti)]2
+ sin [2πfµδ(·,·) (ti)]2

} (5.139)

Finally, C̃λ̃12 (f) is expressed as

C̃λ̃12 (f) =




√√√√√
1 + µ2

α(·,·) (ti)
+2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]



 · e
(

tan−1
{

µα(·,·)(ti)sin[2πfµδ(·,·)(ti)]
1+µα(·,·)(ti) cos[2πfµδ(·,·)(ti)]

})

(5.140)
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From Equation (5.140),
∣∣∣C̃λ̃12 (f)

∣∣∣
2 = {1 + 2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)] + µ2

α(·,·) (ti)}2 (5.141)

Now, an NP-based model for the GPS signal with multipath, denoted by x̃gmp,Π (·, ·),
has been developed. These results will now be used to find the GPS NP.

5.4.2 GPS NP
Using the Gaussian received signal modeled with a multipath mapping, the NP

of x̃mp (·, ·) is given through Equation (4.179) and repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)2
∣∣∣C̃λ̃12 (f)

∣∣∣
2




Gss (f)2

[
Cλ̃11 (f)Cλ̃22 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) + Gn2n2 (f)Cλ̃11 (f)]
+Gn1n1 (f)Gn2n2 (f)





df

(4.179)
The NP of a GPS signal under the conditions in the preceding subsection (as repre-
sented by Box “B2” of Figure 9) is given by

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
∣∣∣C̃λ̃12 (f)

∣∣∣
2



 Gss (f)
[
Cλ̃11 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gnn (f)





df (5.142)

where Gss (f), Gnn (f), Cλ̃11 (f), and
∣∣∣C̃λ̃12 (f)

∣∣∣
2 have all been specified. The only

restrictions upon the multipath effects, α (·, ·) and δ (·, ·), is that (1) at time ti, each
may be represented as constant over the interval [ti − T

2 , ti + T
2
], and (2) that the

stochastic nature of each permits the received signal to be modeled as a Gaussian
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stochastic process. The second constraint may be relaxed if the designer is satisfied
with a Gaussian approximation.

Consider imposing the constraint that α (·, ·) and δ (·, ·) are independent. Sub-
stituting Equations (5.132) and (5.141) into Equation (5.142), the NP of x̃gmpI,Π (·, ·)
is (where the subscript includes I to denote the independence assumptions)

NP (x̃gmpI,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
{ 1 + µ2

α(·,·) (ti)
+2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]

}2

Gss (f)σ2
α(·,·) (ti) + Gnn (f) df

(5.143)
The NP of x̃gmpI,Π (·, ·) given in Equation (5.143) provides much insight into the

multipath phenomena. The following list highlights a few observations.

1. For any fixed attenuation mean, µα(·,·) (t), an increase in the attenuation
variance, σ2

α(·,·) (t), decreases the ability to determine the navigation
parameters of interest. Intuitively, this makes sense— σ2

α(·,·) (t) increases the
uncertainty of an estimate of τ e. For example, in the case that σ2

α(·,·) (t) ≡ 0
for all t, then the denominator is identical to the denominator for the “no
multipath” case given in Equation (5.44) on page 122.

2. The numerator term resulting from
∣∣∣C̃λ̃12 (f)

∣∣∣
2, i.e.,

{1 + µ2
α(·,·) (ti) + 2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]}2 (5.144)

may be interpreted loosely as modeling multipath interference. Destructive
multipath interference, defined as the condition in which 0 ≤ ∣∣∣C̃λ̃12 (f)

∣∣∣
2 < 1,

decreases the NP of x̃gmpI,Π (·, ·). Constructive multipath interference, defined

142



as the condition in which
∣∣∣C̃λ̃12 (f)

∣∣∣
2 ≥ 1, increases theNP of x̃gmpI,Π (·, ·) when

∣∣∣C̃λ̃12 (f)
∣∣∣
2 ≥ 1! Thus, µ2

α(·,·) (t) and µδ(·,·) (t) affect the NP of x̃gmpI,Π (·, ·)
by characterizing the multipath interference. For example, in the case that
µ2

α(·,·) (t) ≡ 0 for all t, then the numerator is identical to the numerator for the
“no multipath” case given in Equation (5.44).

3. The variance of the delay has no effect upon the NP of x̃gmpI,Π (·, ·).
While a much more extensive analysis regarding the effects of multipath upon the NP
of x̃gmpI,Π (·, ·) is possible, the emphasis here is to demonstrate the enhanced ability
of NP theory over any other performance bound – NP theory permits a proper
treatment of characterizing the ability to determine navigation parameters of interest
under a wide range of received signal models.

5.5 Summary
This chapter presented several examples as outlined in Figure 9 on page 109.

Signal of opportunity (SOP)-based time difference of arrival (TDOA) navigation was
modeled in Equation (5.2), repeated here as

[ xb (t, ·)
xr (t, ·)

]
=

[ s (t, ·)
s [t + δbr (t) , ·]

]
+

[ nb (t, ·)
nr (t, ·)

]
(5.2)

This model represented a Gaussian signal and noise with no multipath. The nav-
igation potential (NP) of x � [ xb (·, ·) xr (·, ·) ]T to estimate δbr (·) was found in
Equation (5.13), repeated here as

NP (x) = T
∫ +∞

−∞
(2πf)2Gss (f)2

Gss (f) [Gnbnb (f) + Gnrnr (f)] + Gnbnb (f)Gnrnr (f)df (5.13)
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Furthermore, NP theory was show to be consistent with prior bounds that may be
applied to this signal model. These results correspond to Box “A” in Figure 9 on
page 109.

NP theory was used to predict GPS correlation error performance bounds. It
was justified that, although there is only one receiver in standard GPS techniques,
the general nature of NP theory permits its application to this case. GPS correlation
error performance bounds were predicted without and with multipath effects, in which
the received signals for both cases were modeled as Gaussian stochastic processes.
Specifically, GPS without multipath was modeled in Equations (5.39) and (5.40),
repeated here as

x1 (t) = s (t− τ∆) + n (t) (5.39)

x2 (t) = s (t− τ∆|track) (5.40)

The NP of x � [ x1 (·, ·) x2 (·, ·) ]T to estimate the tracking error, [τ∆ − τ∆|track],
was found in Equation (5.71), repeated here as

NP (x) ≈ 8PaveT
No

[ B
2Tc

− 1
2πT 2c

sin (πTcB) +π2f 2
oAsinc2 (B)

]
(5.71)

Other GPS correlation error performance bounds were presented; however, each
bound considered only one portion of the GPS signal (either carrier-only or code-
only). For example, the NP for carrier-only GPS was found in Equation (5.92),
repeated here as

NP (x)|carrier ≈ 4π2f2
o · SNR (5.92)
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The NP for code-only GPS was found in Equation (5.102), repeated here as

NP (x)|code ≈ 4PaveB
NoBnTc

(5.102)

NP theory provided additional insight into this relationship through Equation (5.105),
repeated here as

NP (x) ≈ NP (x)|code + NP (x)|carrier (5.105)

These results correspond to Box “B1” in Figure 9 on page 109.
Finally, NP theory was used to predict GPS correlation error performance bounds

when the received signal was modeled as a Gaussian stochastic process which con-
tained multipath effects as given in Equations (5.107) and (5.108), repeated here as

xgmp1 (t, ·) = s [t− τ∆ (t) , ·] + α (t, ·) s [t− τ 1 (t) − δ (t, ·) , ·] + n (t, ·)(5.107)
xgmp2 (t, ·) = s [t− τ∆|track (t) , ·] (5.108)

The NP of x � [ xgmp1 (·, ·) xgmp2 (·, ·) ]T to estimate the tracking error

[τ∆ − τ∆|track]

was found without constraining the relationships of the multipath effects in Equa-
tion (5.142), repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
∣∣∣C̃λ̃12 (f)

∣∣∣
2



 Gss (f)
[
Cλ̃11 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gnn (f)





df (5.142)
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A particularly insightful scenario, in which the multipath effects, α (·, ·) and δ (·, ·),
were considered independent, resulted in the NP given in Equation (5.143), repeated
here as

NP (x̃gmpI,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
{ 1 + µ2

α(·,·) (ti)
+2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]

}2

Gss (f)σα(·,·) (ti)2 + Gnn (f)
df

(5.143)
Using this form, NP theory revealed insight into the effects of multipath upon the
ability to determine the tracking error.
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Chapter 6 - Conclusion

6.1 Summary of Results
This research introduced the concept of navigation potential (NP) to quantify the

ability to estimate parameters of interest from a given received signal. The received
signal, x (·, ·), was composed of two signals, each of which was modeled through a
mapping parameterized by the transmitted signal, the receiver measurement noise,
and the time delay incurred by the transmitted signal to travel to the receiver. This
signal model was represented by Equation (4.2), repeated here as

x (·, ·) � [ x1 (·, ·)
x2 (·, ·)

]
=

[ g1 [·, ·; s (·, ·) , n1 (·, ·) , τ 1 (·)]
g2 [·, ·; s (·, ·) , n2 (·, ·) , τ 2 (·)]

]
(4.2)

where xi (·, ·), s (·, ·), and ni (·, ·) are scalar, stochastic processes representing the
received signal at the ith receiver, the transmitted signal, and the noise at the ith

receiver, respectively. Each τ i (·) was the time delay incurred by s (·, ·) to travel to
the ith receiver. The TDOA, τ∆ (t), of the transmitted signal to the first receiver
relative to the second receiver was defined in Equation (4.3) and repeated here as

τ∆ (t) � τ 1 (t) − τ 2 (t) (4.3)

It was desired to obtain an estimate of the TDOA for use in a navigation scheme.
The NP of x (·, ·), denoted by NP (x), was defined as the inverse of the theoretical
lower bound on the variance of any unbiased estimator of τ∆ (t). Furthermore, τ∆ (t)
may be estimated indirectly through a an estimate of a vector of parameters, or θ (t),
for which there exists some mapping h such that τ∆ = h (θ). These developments



resulted in the expression for NP (x) given in Equation (4.25) and repeated here as

NP (x) �
(

∂h(θ)
∂θ I−1 (θ)

[∂h(θ)
∂θ

]T)−1
(4.25)

where I (θ) is the Fisher Information Matrix (FIM) defined element-wise in Equa-
tion (4.21) and repeated here as

[I (θ)]ij � E
{∂ ln [f (x; θ)]

∂θi
∂ ln [f (x;θ)]

∂θj
}

(4.21)

A stochastic mapping was introduced in Equations (4.40) and (4.41) to model the
received signal, xmp (·, ·), as the transmitted signal, attenuated and delayed replicas of
the transmitted signal, and measurement noise. This is a generalization of previous,
related work. Equations (4.40) and (4.41) defined the received signal for all admissible
t, repeated here as

x1mp (t, ·) = s [t− τ 1 (t) , ·] + n1 (t, ·) +

+
N1∑

l=1
αl (t, ·) s [t− τ 1 (t) − δl (t, ·) , ·] (4.40)

x2mp (t, ·) = s [t− τ 2 (t) , ·] + n2 (t, ·) +

+
N2∑

l=1
βl (t, ·) s [t− τ 2 (t) − εl (t, ·) , ·] (4.41)

where each αl (·, ·) and βl (·, ·) are stochastic processes which represent multipath
attenuation, and each δl (·, ·) and εl (·, ·) are stochastic processes which represent the
multipath delay. Using a spectral representation for xmp (·, ·), the NP (xmp) was
found in Equation (4.106) in general terms. Furthermore, the NP was found when
xmp (·, ·) may be modeled as a Gaussian process, denoted by xgmp. Using a spectral
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representation of a finite-timelength observation the xgmp (·, ·), denoted by x̃gmp,Π (·, ·),
the NP (x̃gmp,Π) was found in Equation (4.179) and repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)2
∣∣∣C̃λ̃12 (f)

∣∣∣
2




Gss (f)2

[
Cλ̃11 (f)Cλ̃22 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gss (f) [Gn1n1 (f)Cλ̃22 (f) + Gn2n2 (f)Cλ̃11 (f)]
+Gn1n1 (f)Gn2n2 (f)





df

(4.179)
in which Gss (f), Gn1n1 (f), and Gn2n2 (f) are the power spectral densities of s (·, ·),
n1 (·, ·), and n2 (·, ·), respectively. Furthermore, Cλ̃ij (f) denotes the i-j component
of the autocorrelation matrix of λ̃ (f, ·), defined in Equation (4.127), and repeated
here as

λ̃ (f, ·) �




1 +
N1∑

l=1
αl (ti, ·) e−j2πfδl(ti,·)

1 +
N2∑

l=1
βl (ti, ·) e−j2πfεl(ti,·)




(4.127)

Several examples were demonstrated using theNP result given in Equation (4.179).
Signal of opportunity (SOP)-based time difference of arrival (TDOA) navigation was
modeled as a Gaussian signal in Gaussian noise with no multipath. This special case
of NP was found in Equation (5.13) and repeated here as

NP (x) = T
∫ +∞

−∞
(2πf)2Gss (f)2

Gss (f) [Gnbnb (f) + Gnrnr (f)] + Gnbnb (f)Gnrnr (f)df (5.13)

in which Gnbnb (f) and Gnrnr (f) are the power spectral densities of nb (·, ·), and
nr (·, ·), respectively. The results obtained were shown to be consistent with prior
metrics that may be applied to this signal model.
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NP theory was used to predict the theoretical bounds on GPS correlation error
performance. It was justified that, although there is only one receiver in standard
GPS techniques, the general nature of NP theory accommodates predicting the theo-
retical bounds on estimating the tracking error,

[
τ e � τ∆ − τ∆|track]. GPS without

multipath was modelled in Equations (5.39) and (5.40), repeated here as

x1 (t) = s (t− τ∆) + n (t) (6.1)

x2 (t) = s (t− τ∆|track) (6.2)

The NP of a GPS signal without multipath to estimate the tracking error was found
in Equation (5.71), repeated here as

NP (x) ≈ 8PaveT
No

[ B
2Tc

− 1
2πT 2c

sin (πTcB) +π2f 2
oAsinc2 (B)

]
(5.71)

The relationship of NP to other GPS correlation error performance bounds was pre-
sented. Other bounds considered carrier-only GPS or code-only GPS. For example,
the NP for carrier-only GPS was found in Equation (5.92), repeated here as

NP (x)|carrier ≈ 4π2f2
o · SNR (5.92)

The NP for code-only GPS was found in Equation (5.102), repeated here as

NP (x)|code ≈ 4PaveB
NoBnTc

(5.102)

In contrast, NP theory yields results that are a generalized combination of code
and carrier results, providing additional insight into this relationship through Equa-
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tion (5.105), repeated here as

NP (x) ≈ NP (x)|code + NP (x)|carrier (5.105)

Finally, since NP is not intrinsically tied to the GPS signal structure, these results
may be applied to other code-division multiple access (CDMA), spread spectrum
signals such as those used in many current cellular phone systems [26].

NP theory was used to predict GPS correlation error performance bounds when
the received signal was modeled as a Gaussian stochastic process which contained
multipath effects as given in Equations (5.107) and (5.108), repeated here as

xgmp1 (t, ·) = s [t− τ∆ (t) , ·] + n (t, ·)
+α (t, ·) s [t− τ 1 (t) − δ (t, ·) , ·] (5.107)

xgmp2 (t, ·) = s [t− τ∆|track (t) , ·] (5.108)

The NP of a GPS signal with multipath to estimate the tracking error was found
without constraining the relationships of the multipath effects in Equation (5.142),
repeated here as

NP (x̃gmp,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
∣∣∣C̃λ̃12 (f)

∣∣∣
2



 Gss (f)
[
Cλ̃11 (f) − ∣∣∣C̃λ̃12 (f)

∣∣∣
2]

+Gnn (f)





df (5.142)

A particularly insightful scenario, in which the multipath effects, α (·, ·) and δ (·, ·),
were considered independent, resulted in the NP given in Equation (5.143), repeated
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here as

NP (x̃gmpI,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
{ 1 + µα(·,·) (ti)2

+2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]
}2

Gss (f)σα(·,·) (ti)2 + Gnn (f)
df

(5.143)
In summary, the contributions of this research can be summarized as follows:

1. Navigation potential (NP) theory was developed to characterize the ability to
estimate parameters of interest from a given signal. The general approach
taken enables NP theory to encompass a wide range of problems.

2. NP theory was evaluated for a received signal modeled as the transmitted
signal, measurement noise, and multipath effects. The expressions found
provide performance bounds that were previously unknown.

3. NP theory was used to find GPS correlation error performance bounds. When
the GPS signal was modeled without multipath, the NP solutions provided
insight over that which may be found in previous bounds. When the
GPS signal was modeled with multipath, the NP solutions provided new
performance bounds that were previously unknown.

4. A systematic approach to navigating with signal of opportunity (SOP)-based
time difference of arrival (TDOA) measurements was developed. NP provided
a SOP selection criterion, and under restricted conditions, SOP-based TDOA
NP was shown to be equivalent to previous performance bounds. A SOP-
based TDOA navigation algorithm was shown to be similar to that of GPS
algorithms.
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6.2 Recommendations for Future Research
Navigation potential (NP) theory opens many research topics. Some potentially

promising areas are given in the sections below.

6.2.1 Demonstration of the Three Step Process
In Chapter 3, a method was developed for SOP-based TDOA navigation that

may be applied over a wide range of SOP and uses well-known solution algorithms.
This tool may be demonstrated with a previously exploited SOP (such as AM radio
or analog TV). One future research effort may be to predict performance via NP,
form TDOA measurements using the generalized cross-correlation (GCC), and de-
termine the navigation solution using GPS algorithms. Then, performance results
may be compared to the predicted theoretical results and results from prior research.
Questions to answer may be, “How well does the theoretical NP predict the actual
performance?”; “How does navigation performance of the systematic navigation ap-
proach compare to performance using the prior method specific to that SOP?”; “How
does uncertainty in the power spectral densities affect navigation performance and
the accuracy of the predicted performance?”

6.2.2 Demonstration of NP as a Selection Tool
Appendix B presents many SOP examples. It would be beneficial for future

SOP selection to determine and compare the NP for each SOP.

6.2.3 Theoretical NP of Signals Modeled with Multipath Effects
Section 4.3 developed the NP for received signals modeled as the transmitted

signal with multipath effects and noise. In that development, the probability density

153



function for x̃mp (f, ·) was given in Equation (4.102), repeated here as

fx̃mp(f,·) (ξx) = 1
(2π |f |)2

∫

R5

1
(ξs)2

fs̃Π (ξs) fñΠ
(ξx − ξy

)
•

1∣∣ξαl

∣∣fαl,δl

(
ξαl , 1−j2πf ln

{ 1
ξαl

[ξy1
ξs e

j2πfτ1(ti) − 1
]})

•

1∣∣ξβm

∣∣fβm,εm

(
ξβm,

1−j2πf ln
{

1
ξβm

[ξy2
ξs e

j2πfτ2(ti) − 1
]})

•

dξαldξβmdξsdξy (4.102)

Equation (4.102) expresses fx̃mp(f,·) at a given f in terms of the following known
probability density functions:

fs̃Π(f,·), fñΠ(f,·), fαl(ti,·),δl(ti,·), fβm(ti,·),εm(ti,·)

The final step in finding the NP was given in Equation (4.106), repeated here as

NP {x̃mp,Π (·)} = −

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}
E

{
∂2 ln[f(x̃mp,Π(·);τ1,τ2)]

(∂τ2)2
}

−E{
∂2 ln[f(x̃mp,Π(·);τ1,τ2)]

∂τ1∂τ2

}2

E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
(∂τ1)2

}
+ E

{
∂2 ln[f(x̃mp,Π(·);τ1,τ2)]

(∂τ2)2
}

+2E
{

∂2 ln[f(x̃mp,Π(·);τ1,τ2)]
∂τ1∂τ2

}

(4.106)
This form seems somewhat abstract, because few assumptions were imposed upon
the stochastic nature of the multipath effects.

Using this theory, an example which models the stochastic nature of the mul-
tipath effects without imposing Gaussian assumptions upon the received signal may
provide additional insight into NP that is not found in the Gaussian case. Further-
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more, this is the place in the research to continue the development for received signals
which cannot be well-modeled as Gaussian (and, for which, higher-than-second-order
characteristics are desired). These examples may give insight into better understand-
ing the effects of multipath upon the ability to determine navigation parameters of
interest.

6.2.4 The Effects of Autocorrelation Sampling Upon the Theoretical GPS
NP

The theoretical performance bounds on GPS correlation error performance were
found in Section 5.4 in Chapter 5 for a GPS received signal with no multipath and with
a single multipath. (A single multipath could be shown to represent the collective
effect of many multipath signals. See the discussion surrounding Equation (4.72) on
page 77.)

These NP results assumed that the entire autocorrelation function is found.
Practical implementations do not exhibit this behavior; rather, a finite number of time
delays are found. This is roughly equivalent to using samples of the autocorrelation
function rather than the continuous function itself. The effects of “autocorrelation
samples” should be explored in more detail. When the received signal is sampled
at (and the internal signal is generated as samples at) the sampling frequency fs, a
Fast Fourier Transform may be used to find autocorrelation samples at a time-delay
spacing of 1

fs . The effect this has upon NP should be explored in more detail. A
more extreme case is that of two or three autocorrelation samples being computed
about the best estimate for the tracking delay (as is done with early-late correlators).
If an expression for NP is found that takes into account autocorrelation samples, then
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the performance of techniques such as narrowly spaced correlators could be predicted!
Furthermore, there may exist a better correlator (in terms of minimizing the mean-
square error of the tracking error estimate) that has not been employed.

6.2.5 Simulating the Theoretical GPS NP
A simulation should be conducted to validate the theoretical GPS NP results

found in Equations (5.71) and (5.143). A Monte Carlo analysis of correlator error
performance could be conducted; however, practical implementations would require
sampled signals. Once the effects of autocorrelation sampling upon the theoretical
GPS NP are characterized, a computer-simulated Monte Carlo analysis could be
readily accomplished.

6.2.6 GPS NP with Multipath
NP theory was used in Section 5.4 to predict GPS correlation error performance

bounds for the case in which the received signal contains multipath effects. The NP
was found in Equation (5.143), repeated here as

NP (x̃gmpI,Π) = T
∫ +∞

−∞

(2πf)2Gss (f)
{ 1 + µ2

α(·,·) (ti)
+2µα(·,·) (ti) cos [2πfµδ(·,·) (ti)]

}2

Gss (f)σ2
α(·,·) (ti) + Gnn (f) df

(5.143)
This example was used in this research to demonstrate that the foundations of NP
theory provide the theoretical basis for new results in many areas. As such, a
complete evaluation of Equation (5.143) was not performed in this research.

Additional insight into GPS correlation error performance bounds when multi-
path is present may be found through further exploitation of Equation (5.143). For
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example, one might consider varying µα(·,·) (t), σ2
α(·,·) (t), and µδ(·,·) (t) over a range of

“typical” values to determine more precisely their effect upon the GPS NP.

6.2.7 NP Theory Extended to Non-Stationary Processes
Throughout this analysis, wide-sense stationary processes have been assumed.

The only attenuation and delay effects that can be considered while maintaining sta-
tionarity are those which can be considered constant over the finite-timelength obser-
vation interval. As discussed in Section D.3 in Appendix D, this assumption permits
“in the mean-square sense” concepts (such as stochastic continuity, the stochastic
derivative, and the stochastic integral) to be formally defined.

The general orthogonal expansion avoids these expressions while maintaining
rigor, resulting in a generalization of the Fourier Stieltjes transform to include processes
for which stationarity is not assumed [6]. Thus, a theoretical development for NP
using this approach would encompass a wider range of mappings than does the ap-
proach taken in this research. One obvious mapping that the extended NP theory
would accommodate is a mapping that models time-varying (over the observation
interval) attenuation and delay effects.
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Using Theorem 6 on page 196,

fγ1l(ti,·)
(

ξγ1l

)

=
∫ +∞

−∞

1
∣

∣ξαl

∣

∣

fαl(ti,·),δel(ti,·)
(

ξαl,
ξγl
ξαl

)

dξαl (4.71)

Furthermore, all γ1l (ti, ·)’s are mutually independent (since αl (ti, ·) and δl (ti, ·)
are independent of all αm (ti, ·) and δm (ti, ·), m �= l). Using Theorem 5, the proba-
bility density function of

γ1Σ (ti, ·) �
N1
∑

l=1
γ1l (ti, ·) (4.72)

is the successive convolution of N1 probability density functions. Omitting the ar-
guments of each γ1l (ti, ·), the convolution result for two terms is

fγ11+γ12

(

ξγ112

)

=
∫ +∞

−∞
fγ11

(

ξγ112
− ξγ12

)

fγ12

(

ξγ12

)

dξγ12
(4.73)

Continuing with an additional term,

fγ11+γ12+γ13

(

ξγ1123

)

=
∫ +∞

−∞
fγ11+γ12

(

ξγ1123
− ξγ13

)

fγ13

(

ξγ13

)

dξγ13
(4.74)

=
∫ +∞

−∞

[∫ +∞

−∞
fγ11

(

ξγ1123
− ξγ12

− ξγ13

)

•

fγ12

(

ξγ12

)

dξγ12

]

fγ13

(

ξγ13

)

dξγ13
(4.75)

=
∫ +∞

−∞

∫ +∞

−∞
fγ11

(

ξγ1123
− ξγ12

− ξγ13

)

•

fγ12

(

ξγ12

)

fγ13

(

ξγ13

)

dξγ12
dξγ13

(4.76)

and so on until

fγ1Σ(ti,·)
(

ξγ1Σ

)

=
∫ +∞

−∞

∫ +∞

−∞
· · ·∫ +∞

−∞
fγ11

(

ξγ1Σ
− ξγ12

− ξγ13
· · · − ξγ1N1

)

•

fγ12

(

ξγ12

)

fγ13

(

ξγ13

) · · · fγ1N1

(

ξγ1N1

)

dξγ12
dξγ13

· · · dξγ1N1

(4.77)
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APPENDIX A - Analog Modulation Review

A.1 Introduction
This appendix reviews common analog modulation techniques that are used in

signals of opportunity. The modulation definitions described are often stated by
authors without explicitly stating the analytical representation of the modulation.
Hence, this appendix serves as a quick reference in interpreting common analog mod-
ulation terms.

In radio frequency (RF) communications, the modulated, transmitted carrier,
s (t), is of the form

s (t) = A [g (t) , t] cos {θ [g (t) , t]} (A.1)

where A [g (t) , t] is the instantaneous amplitude, and θ [g (t) , t] is the instantaneous
phase. The information signal, g (t), is a bandlimited signal with the magnitude of
its Fourier transform, |G (f)|, shown notionally in Figure 11. Equation (A.1) is the
most general form; the remaining sections will show how A and θ vary depending
upon the modulation scheme. Section A.2 presents amplitude modulation (AM),

|Gf |

f
fb−fb

Figure 11. Notional Representation of |G (f)|



in which � is strictly a function of time; Section A.3 presents frequency modulation

(FM), in which A is strictly a function of time.

A.2 Amplitude Modulation

Amplitude modulation embeds the information in the amplitude of the carrier

signal and is the oldest widely-used form of modulation. Through the years, var-

ious forms of amplitude modulation have been used. Presented here are: Double

Sideband Modulation (DSB) in Section A.2.1, Single Sideband Modulation (SSB) in

Section A.2.2, Vestigial Sideband Modulation (VSB) in Section A.2.3, and Double

Sideband Full Carrier Amplitude Modulation (AM) in Section A.2.4.

A.2.1 Double Sideband Modulation (DSB)

Double Sideband Modulation (DSB) is a form of AM with a carrier, c (t), given

by [31,55]

c (t) , Ac cos!ct

where Ac is the carrier gain and !c is the carrier frequency. In DSB, the information

signal, g (t), is considered to have a zero DC component, shown in the time domain

in Figure 12(a). When multiplied by the carrier, the DSB signal is given by

sDSB (t) = Acg (t) cos!ct (A.2)

The envelope of sDSB (t), denoted by ge (t), is shown in Figure 12(b). Recalling

jG (f)j shown in Figure 11, the magnitude of the Fourier transform for a DSB signal
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Figure 12. (a) Modulating Signal g (t) and (b) Modulation Envelope
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is shown in Figure 13 and given as

SDSB (f) = Ac
2 G (f + fc) + Ac

2 G (f − fc)

where ωc = 2πfc.

f
− f c f c f c + f bf c − f b−  f c − f b −  f c + f b 

|S  f  |

A c

2

Figure 13. |S (f)| for DSB Modulation

A.2.2 Single Sideband Modulation (SSB)
Since the upper-sideband and lower-side band contain the same information,

single sideband modulation (SSB) conserves bandwidth by transmitting exactly one
side of the signal. For example, the SSB equivalent for Figure 13 is shown in Figure 14.

A.2.3 Vestigial Sideband Modulation (VSB)
SSB was introduced to conserve bandwidth, but it requires a filter to remove

the lower sideband without attenuating or phase shifting the upper sideband. Using
real filters in practice, a vestige of the lower sideband remains and has led to the
name vestigial sideband modulation (VSB) [7]. Figure 15 shows VSB Modulation
from a conventional AM scheme. The carrier is passed without attenuation since
the spectrum remains unchanged near the carrier frequency. Using VSB from a DSB
modulation scheme appears to suppress the carrier, known as Carrier-Suppressed VSB
Modulation.
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− f c f c f c + f b−  f c + f b 
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A c

2

Figure 14. |S (f)| for SSB Modulation

f
− f c f c f c + f bf c − f b−  f c − f b −  f c + f b 

|S  f  |

A c

2

A g A u

2

Figure 15. |S (f)| for VSB Modulation
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A.2.4 Double Sideband Full Carrier Amplitude Modulation (AM)

In double sideband, full carrier amplitude modulation, commonly called ampli-

tude modulation (AM), a DC component is added to a voltage signal (such as g (t)

shown in Figure 12(a)) to elevate the signal above zero [31]. Figure 16 shows the

resulting signal in subplot (a) as well as the modulation envelope in subplot (b).

Mathematically, given the carrier c (t) = Ac cos!ct, the modulated signal is

sAM (t) = Acg
0 (t) cos!ct

The modulating signal g0 is formed from g by

g0 (t) =

�
Ag
Ac

�
Aug (t) + 1

where Au normalizes g to unity, Ag is the modulating signal�s peak magnitude, and

+1 is the DC component used to prevent distortion. The modulation factor, mAM ,

is de�ned as

mAM , Ag
Ac

(A.3)

Ag and Ac must be chosen such that 0 � mAM � 1; i.e., Ag must be chosen such that

0 � Ag � Ac. Substituting,

sAM (t) = Ac

��
Ag
Ac

�
Aug (t) + 1

�
cos!ct

= [Ac + AgAug (t)] cos!ct

Hence, Fourier transform is given in Equation (A:4) and shown in Figure 17.

SAM (f) =
Ac
2
� (f + fc) +

Ac
2
� (f � fc) +

AgAu
2

G (f + fc) +
AgAu
2

G (f � fc) (A.4)
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Figure 16. Conventional AM: (a) Modulating Signal and (b) Modulation Envelope

f
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A.3 Frequency Modulation

Frequency modulation embeds the information into the frequency of the wave-

form rather than the amplitude. The result is reduced transmission noise, since white

noise a¤ects the amplitude, not the frequency, of the transmitted signal [31]. Sec-

tion A.3.1 presents frequency modulation (FM), while Section A.3.2 presents phase

modulation (PM). Section A.3.3 discusses the sidebands resulting from frequency

modulation.

A.3.1 Frequency Modulation (FM)

In frequency modulation (FM), the instantaneous frequency of the carrier is var-

ied to embed the information [31]. The carrier, c (t), is de�ned as

c (t) , Ac cos (2�fct+ �)

where Ac is the carrier amplitude, fc is the carrier frequency, and � is the carrier

phase. Frequency modulation is induced by de�ning the frequency of the transmitted

waveform, fFM , as

fFM = fc + (�f) g (t) (A.5)

where g (t) is the modulating signal and�f is the peak frequency deviation. Following

the convention from Equation (A:1) and using the relationship

d�FM (g (t) ; t)

dt
, 2�fFM

Equation (A:5) becomes

d�FM (g (t) ; t)

dt
= 2�fc + 2� (�f) g (t) (A.6)
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where (�f) g (t) is called the frequency deviation. Integrating Equation (A:6) yields

�FM (g (t) ; t) = 2�fct+ 2� (�f)

Z
g (t) dt+ �0

and the �nal FM signal is

sFM (t) = Ac cos �FM (g (t) ; t) = Ac cos

�
2�fct+ 2� (�f)

Z
g (t) dt+ �0

�
(A.7)

To gain insight into the FM signal, consider the modulating signal, g (t), de�ned

as

g (t) , cos 2�fgt

where fg is the modulating frequency. Now, Equation (A:7) becomes

sFM (t) = Ac cos

�
2�fct+ 2� (�f)

Z
cos (2�fgt) dt+ �0

�
= Ac cos

�
2�fct+

�f

fg
sin (2�fgt) + �0

�
(A.8)

The degree of modulation for FM, mFM , is de�ned as6

mFM , �f

fg
(A.9)

The amplitude of the modulating signal determines the frequency deviation, while the

frequency of the modulating signal, fg, determines the rate of change of the frequency

deviation.

6Some authors de�ne the degree of modulation, m, as m , �f
maxf�fg , where the numerator is the peak

frequency deviation and the denominator can be interpreted as the maximum peak frequency deviation the
system is capable of exhibiting. Since �f is proportional to the amplitude of the modulating signal, mFM

de�ned in Equation (A:9) is more consistent with the de�nition of mAM in Equation (A:3).

166



A.3.2 Phase Modulation (PM)

In phase modulation (PM), information is embedded in the phase of the car-

rier [31]. Using the carrier c (t) = Ac cos (2�fct+ �) and modulating signal g (t),

where the amplitude of g (t) varies within �1, the phase modulated signal is

sPM (t) = Ac cos f2�fct+ [�0 + (��) g (t)]g (A.10)

where �� is the peak phase deviation and (��) g (t) is the phase deviation. The

modulation index for PM, mPM , is de�ned as7

mPM , �� (A.11)

Notice the modulated signals of FM (Equation (A:7)) and PM (Equation (A:10))

di¤er in that the FM signal integrates the input signal prior to modulation. This

causes causes PM to be more sensitive than FM to the frequency of the modulating

signal [31]. Most applications of PM counter this e¤ect by integrating the input

signal before applying Equation (A:10).

A.3.3 Sidebands of FM

Unlike AM, analyzing the frequency components of FM is much more tedious.

It can be shown [31] that Equation (A:8) is equivalent to

sFM (t) = Ac sin

�
2�fct+

�f

fg
sin 2�fgt+ �00

�

= Ac

�
�f

fg

�8<: J0

�
�f
fg

�
sin (2�fct+ �00)

+Jn

�
�f
fg

�
sin [2� (fc � nfg) t+ �00]

9=; for n = 1; 2; � � �

7Some authors de�ne the degree of modulation, m, as m , ��
maxf��g , where the numerator is the peak

phase deviation and the denominator can be interpreted as the maximum peak phase deviation the system
is capable of exhibiting. Since �� is proportional to the amplitude of the modulating signal, mPM de�ned
by Equation (A:11) is more consistent with the de�nition of mAM in Equation (A:3).
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where J0 (�) and Jn (�) are Bessel functions of the �rst kind of zero order and of the

nth order, respectively. The sidebands are located at all harmonics of the modulating

frequency8 about the carrier, and their magnitude may be found as [52]

Jn (mFM) =
mFM

2
n

"
1

n!
�
�
mFM

2

�2
1! (n+ 1)!

+

�
mFM

2

�4
2! (n+ 2)!

�
�
mFM

2

�6
3! (n+ 3)!

+ � � �
#

for n � 1

Analysis of the Bessel functions reveals the following about the power distribution

of an FM signal:

1. Low/high modulating frequencies have closely/widely spaced sidelobes.

2. When no modulation is present (mFM = 0), all the sidebands are equal to zero.

3. As the frequency modulation is increased, power is shifted away from the

carrier towards the sidebands.

4. Power is contained in all sidelobes when mFM 6= 0 (i.e., the bandwidth is

in�nite); however, the power in the nth sidelobe reduces as n increases. Thus,

the actual FM signal transmitted must be bandlimited by �ltering sidelobes

beyond an allowable bandwidth prior to transmission.

The e¤ects of mFM , �f
fg
and fg on the power distribution of an FM signal are

shown in Figure 18. When bandwidth depends upon the power spectral density to

fall below some value,9 the bandwidth increases when either mFM or fg increases.

8When more than one modulating frequency is present, the sidebands occur at all sum and di¤erence
combinations of the frequencies [31].

9For example, one such de�nition is the 3 dB bandwidth, or half-power bandwidth. The 3 dB bandwidth
of a signal is the interval between frequencies at which the signal�s power spectral density is lower than one-
half the power spectral density peak [70].
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A.4 Summary

In this appendix, common analog modulation schemes were reviewed to under-

stand signals of opportunity better. Information was embedded in the envelope of

the carrier using amplitude modulation and the phase of the carrier using frequency

modulation. Various forms of amplitude modulation were presented: double side-

band modulation (DSB), single sideband modulation (DSB), vestigial sideband mod-

ulation (VSB), and double sideband full carrier amplitude modulation (AM). Two

frequency modulation techniques were presented: frequency modulation (FM) and

phase modulation (PM).
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APPENDIX B - Examples of Signals of

Opportunity

Navigation using signals of opportunity (SOP) has been motivated as an alter-

native to GPS navigation. Furthermore, it has been remarked that many SOP are

available; this appendix outlines some speci�c examples of SOP and is not an ex-

hausitive treatment of available SOP. Since SOP are generally not maintained by the

navigation user, knowledge of the signal structure may be di¢ cult to obtain. The

Federal Communications Commission (FCC) dictates many signals�structure, power

level, bandwidth, coverage area, etc. Signals are selected and compared using these

data since it is readily available to most designers. Other SOP may be more suitable

for particular applications in areas outside the FCC�s control.

This appendix outlines speci�c examples of SOP by limiting the scope of the

SOP considered, followed by a presentation of signals grouped as land-based or space-

based. Examples are given within each group with consideration given to the signal�s

structure, coverage area, frequency content, transmitter movement, and passivity.

Speci�cally, Section B.1 outlines the selection criteria and assumptions used to select

the examples. SOP examples are presented in Sections B.2 and B.2 with emphasis

on their frequency content, signal structure, and coverage. The presentation order is

based upon the transmitter location� land-based SOP in Section B.2 and space-based

SOP in Section B.3.



B.1 Selection Criteria and Frequency Allocation

Since SOP are abundant, selection criteria are needed when choosing signals of

opportunity. For navigation purposes, one might select signals based upon their

navigation potential, discussed in more detail in Chapter 4. The following lists the

criteria used to select the examples in this appendix.

1. Coverage Area �Ideally, the coverage area of the signals (or system of signals)

should be wide enough to be used in most of the world. For example, a

signal that exists only near Dayton, Ohio is not of great interest. While

any individual signal (such as the Standard Broadcast signal discussed in

Section B.2.1) may exist in a limited area, it should be part of a system that

transmits similar signals throughout a large cover area.

2. Frequency Range �Naturally, all of these signals are contained in the radio

frequency portion of the spectrum, but depending upon the band, there are

advantages and disadvantages for use in navigation. For example, high

frequency signals may yield more accurate measurements but require greater

bandwidth during sampling and processing. Low frequency signals may

provide greater penetration indoors or under water. As such, signals are not

discriminated based upon the band used.

3. Transmitter Movement � The signals discussed have transmitters that are

stationary, slowly moving, or rapidly moving. While signals are not excluded

based upon this criteria, the transmitter movement of each signal and its e¤ects

upon navigation are discussed when each signal is presented.
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4. Passivity �The intent is to use these signals in a passive navigation scheme.

All land-based cellular networks are excluded since these signals are inherently

not passive. (�Eavesdropping� on such signals may be passive navigation;

their navigation potential can be predicted using the results of Chapter 4 even

though they are not detailed in this appendix.)

5. Demodulation �Demodulation is interpreting the modulation of the signal

to determine the information conveyed by the signal. For most signals, the

demodulation process required to obtain this information is not available to

the public. Therefore, it is assumed that demodulating the signal to obtain

the information contained therein will not be employed.

Frequencies are allocated through an international treaty with the International

Telecommunication Union (ITU), an organ of the United Nations [51]. According

to the ITU, the United States lies in Region Two of the three regions of the world.

The Federal Communications Commission (FCC) and the National Telecommunica-

tions and Information Administration (NITA) govern the frequency allocation and

broadcast speci�cations for the United States through the Manual of Regulations and

Procedures for Federal Radio Frequency Management [24]. The descriptions of the

signals of opportunity in the remainder of this appendix are based upon the FCC

mandates for Region 2. Refer to Reference Data for Engineers [51] for descriptions

of signals of opportunity in other regions.
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B.2 Land-Based Signals

Land-based signals are generally transmitted from stationary towers at a �xed

elevation. The position of a stationary transmitter can be determined precisely,10

and navigation schemes can take full advantage of this. Furthermore, with su¢ cient

transmitters, the horizontal position can be resolved well from a geometry stand-

point, potentially achieving greater accuracy than GPS [34]. Conversely, altitude

resolution may be poor, because the geometry associated with using land-based tow-

ers has poor sensitivity in the vertical direction (relative to the horizontal directions).

Coverage areas are generally small compared to the space-based systems discussed in

Section B.3.

Land-based signals are characterized by higher received power than space-based

signals and do not have ionospheric and tropospheric propagation delays. Although

there is no Doppler e¤ect due to transmitter movement, frequency instabilities in the

transmitter may present new problems.

In this section, Standard Broadcasting (commonly known as �AM Radio Sta-

tions�), FM Broadcasting (commonly known as �FM Radio Stations�), Television

Broadcasting, and Digital Television Broadcasting are discussed.

B.2.1 Standard Broadcasting

Standard broadcasting [21] uses double sideband full carrier amplitude modula-

tion (AM) described in Section A.2.4. A total of 107 carrier frequencies from 540

to 1600 kHz spaced 10 kHz apart occupy the 535 to 1605 kHz band. Each carrier

10Station positions can be found from FCC databases, surveying the site, or using multiple receivers to
determine the position.
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frequency is required to be maintained within ±2 Hz. No additional bandwidth is
reserved between channels for interference protection (called a guard band), so the
bandwidth is generally considered to be 10 kHz. The information content is voice
and music in the 50 Hz to 16 kHz range. Figure 19 shows the frequency content in
the AM band.

Channels are classified according to the range of coverage (with the number of
stations in parentheses): clear (62), regional (41), and local (> 1000) [51]. Clear
channels service a wide area and are free of interference on the same and adjacent
channels. Guidelines are placed on the station’s service area, classified as primary
and secondary based upon the field intensity. For example, only one clear station is
allowed to operate at night within a 750 mile radius, and its maximum transmit power
is 50 kW. Regional channels service a populated area and the surrounding rural area
and are limited to 5 kW. Local channels service a city or town and the surrounding
rural area and are limited to 1 kW and 250 W during the day and night, respectively.

One limitation of AM broadcasts is that only one channel can be transmitted at
a time; thus, stereo effects cannot be achieved. Three methods have been proposed
to add stereo (two channels, left and right, denoted by L and R, respectively) to the
standard AM broadcast system:

535 540 550 1600545 555 1595 1605 f (kHz)

Figure 19. Standard Broadcast Signal Structure
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1. Mixed Mode �The carrier is AM with the (L+R) signal and PM/FM with

the (L�R) signal.

2. Independent Sideband (Kahn System) �The upper and lower sidebands of the

carrier are AM with the L and R signals, respectively.

3. Quadrature (Motorola System) � Two phase-locked carriers are AM and

combined at a �xed angle.

A �marketplace approach� has been employed by the FCC, and the Motorola

System has been the most widely accepted [51]. Frequncy modulation broadcasting,

discussed next, overcomes this limitation as well as reproducing the sound at a higher

�delity and with less noise than AM.

B.2.2 Frequency Modulation Broadcasting

Frequency modulation broadcasting [22] allows for the transmission of voice or

music in two channels� left (L) and right (R). FM has improved noise rejection

over AM because the information is embedded in the frequency of the carrier, not the

amplitude [31]. The FM broadcast uses double sideband suppressed carrier amplitude

modulation (AM) described in Section A.2.1 to transmit the (L�R) di¤erence signal

and frequency modulation described in Section A.3 to transmit the (L+R) composite

signal. Each channel can be reconstructed individually at the receiver, thereby

permitting two channels of information.

A total of 101 carrier frequencies from 87:9 to 107:9 MHz spaced 200 kHz apart

to occupy the 87:8 to 108 MHz band, denoted Channel 200 through Channel 300.

Each carrier frequency is required to be maintained within �2 kHz. The maxi-
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mum frequency deviation is �75 kHz; hence, the signal bandwidth is 150 kHz. The

allotted channels are 200 kHz, providing 25 kHz guard bands at the upper and

lower extremes. Channels 200 (87:9 MHz) through 220 (91:9 MHz) are reserved

for noncommercial/educational broadcasts, while channels 221 (92:1 MHz) through

300 (107:9 MHz) are available to commercial and noncommercial/educational broad-

casts. Channel 200 (87:9 MHz) is reserved for Class D stations (discussed next) in

areas not served by a television broadcast operating on Channel 6 (discussed in Sec-

tion B.2.3). [51]

Stations are classi�ed into Class A, B, C, or D based upon antenna height and

transmitted power. Class A stations service a small city or town and are limited

to 3 kW. Class B and C stations serve populated areas and are limited to a 50 kW

transmitter up to 500 feet above the surrounding terrain and a 100 kW transmitter up

to 2000 feet above the surrounding terrain, respectively. Exceeding height limitation

is allowed with a corresponding power reduction. Class D stations are limited to

10 W transmissions. The FCC permits low power (1 W east and 10 W west of the

Mississippi River) repeaters to receive a station�s broadcast and retransmit (without

enhancement) on a di¤erent, available channel [51].

Co-channel and adjacent channel interference, population, and land zoning are

factors in station operation and separation, but an average separation of 75 miles is

maintained. Generally, right-hand circular polarization is used, except Channels 201

(88:1MHz) through 220 (91:9MHz) use vertical polarization to minimize interference

with a television broadcast operating on Channel 6 (discussed in Section B.2.3).
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The frequency spectra of an FM broadcast is shown in Figure 20. At the far left,
0 represents the nominal channel center frequency, and only the upper transmission
is shown. Typical modulating signals contain frequencies up to 15 kHz. Thus, the
left (L) and right (R) composite signal is FM (see Section A.3) with a bandwidth
of 15 kHz residing from 0 to 15 kHz above the channel center frequency. The
(L−R) difference signal is double sideband, suppressed carrier (DSBSC) AM with
a bandwidth twice the frequency content, or 30 kHz. A carrier with a frequency
38 kHz above the channel center frequency is used, resulting in the DSBSC AM signal
to reside from 23 to 53 kHz above the channel center frequency. The lower sideband
(LSB) and upper sideband (USB) are shown to emphasize the content of a DSBSC
AM signal. A pilot carrier of 19 kHz above the channel center frequency is sent for use
in a phase lock loop and for use in demodulating the (L−R) signal. The guard band
of 25 kHz is shown from 74 to 99 kHz above the channel center frequency. Finally, an
optional Subsidiary Communications Authorization (SCA) [23] is shown occupying
the upper limits of the channel, including the guard band. This signal is AM and is
used to transmit voice or data, related or unrelated to the main transmission.

0 1 5 2 3 5 3 9 91 9 7 6

G u a r d
B a n d

F M
( L + R )

D S B S C  A M
( L - R )

L S B U S B

S C A
( O p t i o n a l )

3 8 f ( k H z )

Figure 20. Frequency Modulation Broadcast Signal Structure
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B.2.3 Television Broadcasts (TV)

Television broadcasts (TV) [21] provide sound and video service to the general

public over the very high frequency (VHF) and ultrahigh frequency (UHF) regions.

The VHF/UHF spectrum is broken into 6 MHz, numerically designated, channels as

listed in Table 2. Care is taken to separate the transmitter towers to avoid interfer-

ence based upon e¤ective radiated power, antenna height, and average terrain. An-

tennas may be directional (with restrictions), typically have horizontal polarization,

and are permitted to be right-hand circular polarization. As dictated by the Amer-

ican Television Standard Committee (ATSC), each channel is comprised of a video,

audio, and color signal with separate carriers as shown in Figure 21 [51]. The signal

components are detailed next.

B.2.3.1 Video Signal The video signal provides the luminance of each

pixel as well as horizontal and vertical synchronization pulses. To understand the

information content of the signal, it is important to understand how a television

image is refreshed. Television video scanning starts at the upper left of the image

(from the viewer�s viewpoint) and scans from left to right horizontally across the

image. The scanner then returns without scanning to the far left of the screen

and is lowered by twice the height of one horizontal scan, �skipping�one horizontal

Table 2. TV Channels and Corresponding Frequencies

Channels Frequencies (MHz)

2� 4 54� 72
VHF 5� 6 76� 88

7� 13 174� 216
UHF 14� 69 470� 806

Note: Channels 70� 83 ( 806� 890 MHz) are
now secondary to land modile applications.
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Figure 21. Television Broadcast Signal
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line. This scanning process continues to the bottom of the screen, refreshing the

odd numbered horizontal lines. The scan then returns near the top of the screen

to the horizontal line that was previously �skipped.� The scan then continues on

these alternate horizontal lines, or even numbered lines, resulting in an interleaved

pattern. Each set of alternating lines, called a �eld, is updated at 29:97 Hz. Both

�elds together, called a frame, are updated at 59:94 Hz. Each complete TV screen,

or frame, is comprised of 525 horizontal lines updated at 15:734264 kHz. [7, 51, 52]

The video signal performs two functions: (1) provides luminance information, and

(2) synchronizes the receiver scanner to the source scanner. There are two distinct

regions of amplitude to distinguish these tasks. The synchronization pulses have

an amplitude within 75 to 100% of the maximum modulation amplitude, while the

luminance information amplitude lies from 0 to 75% of the maximum modulation

amplitude. This enables the receiver to distinguish the synchronization pulses more

readily. [25] During the scan of a line, the amplitude of the signal�s modulation

corresponds to the luminance (or �brightness�) of the image to be reconstructed at

that point on the TV screen. The timing of the synchronization pulses synchronizes

the horizontal and vertical scan rates of the receiver to the source. Further, to

determine the luminance information, the signal�s modulation is clipped at 75%, and

an amplitude of 75% of the maximum amplitude is considered �black� while 0%

of the maximum amplitude is considered �white.� Therefore, the synchronization

pulses also command no lumination while the scanner returns from right to left after

a horizontal line scan or from bottom to top after the completion of a �eld scan. The
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synchronization pulses are band-limited11 square pulses with well-de�ned minimum

and maximum amplitudes, rise times, and fall times. [25] Just as LORAN uses pulse

bursts for navigation (from Section 2.2), the unique sequence of television pulse bursts

may also be useful in a navigation scheme. [12]

The frequency content of the video signal is 0� 4 MHz, so VSB AM is used (see

Section A.2.3) to �t the signal into the allotted space shown in Figure 21. The video

signal is centered at 1:25MHz�1000 Hz above the lower channel limit, where an addi-

tional o¤set of �10 kHz may be mandated for interference suppression. Note that the

full upper sideband is 4 MHz and the vestige sideband is 750 kHz, each with 500 kHz

allotted for trail-o¤. Due to the horizontal scanning, the video signal�s spectra oc-

curs in clusters about the video carrier frequency at each harmonic of the horizontal

scanning rate (15:734264 kHz). Although 525 horizontal lines are mandated to be

transmitted, approximately 484 lines are used in image reconstruction. Rather than

luminance information, the remaining �lines� transmit test signals, control signals,

cue signals, text or data transmission such as closed captioning. [7,25,51,52]

B.2.3.2 Color Signal The color signal, which provides the chrominance

of each pixel, is interleaved between the clusters of the video signal as described pre-

viously by selecting a carrier frequency of 3:579545 MHz �10 Hz above the picture

carrier. Chrominance information is separated into in-phase and quadrature compo-

nents, each of which DSB (suppressed carrier) modulate the color carrier, generating

the upper sideband of 500 kHz and a lower sideband of approximately 1:5 MHz as

11Part of the video signal, the frequency content of the synchronization pulses must lie within the video
signal bandwidth shown in Figure 21.
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shown in Figure 21. The in-phase and quadrature color components and the video

signal are added before transmission. Thus, the magnitude of the signal represents

the luminance (or intensity) of the current pixel allowing backwards-compatibility

with �black-and-white�receivers, while the instantaneous phase of the signal repre-

sents the chrominance (or color) of the current pixel. [7,52]

B.2.3.3 Audio Signal The audio signal is mandated to have a carrier

4:5 MHz �1000 Hz above the picture carrier and a maximum bandwidth of 120 kHz.

Under the Broadcast Television Sound Committee (BTSC) format, several signals are

present as shown in Figure 22. The sound carrier and pilot carrier are transmitted

5:75 MHz and 5:75 MHz +15:75 kHz = 5:76575 MHz above the lower channel limit,

respectively. The 15:75 kHz pilot, fH , is equal to the horizontal scan rate and is

used to locate each of the remaining signals within the audio band. The composite

of the left (L) and (R) signal is FM (see Section A.3) between 0 � fH and 1 � fH ,

and the (L�R) signal is DSB, suppressed carrier, AM (see Section A.2.1) between

1 � fH and 3 � fH . Each is designed to carry up to a 15 kHz signal and enables

stereo or mono audio signals corresponding to the video. A separate audio program

(SAP) channel is AM about 5 � fH , containing related (i.e., similar audio as (L+R)

in another language) or unrelated audio up to 12 kHz. A utility audio data channel

(PRO channel) with a bandwidth of 3kHz.about 6:5�fH is designed to carry additional

voice or data. [51]

183



S o u n d
C a r r i e r

5 . 7 5

F M
( L + R )

D S B S C - A M
( L - R )

P i l o t

1 f H 2 f H 3 f H 4 f H 5 f H
6 f H0 f H

7 f H

5 . 8 6 0 2 5

G u a r d
B a n d

6

( S A P ) P R O

f ( M H z )

Figure 22. Television Broadcast Audio Signal
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B.2.4 Digital Television Broadcasting

Digital Television (DTV) was �rst introduced in 1998, and by 2001, 1; 266 DTV

stations received permits from the FCC. According to the FCC, analog TV stations

will be phased out, eventually leading to over 1; 600 DTV stations. The American

Television Standard Committee (ATSC) dictates DTV to use 8-ary VSB (discussed

in Section A.2.3) with a symbol rate of fDTV = 10:762237 MHz and 2=3 coding.12 In

addition, the carrier is transmitted to aid in coherent demodulation of the signal; and

the spectrum (at baseband) is identical to that given in Figure 15 in Section A.2.3. [62]

In analog TV, each screen is comprised of horizontal lines and is refreshed with

two interlaced �elds. Field 1 contains the odd numbered lines, and �eld 2 contains

the even numbered lines. By varying the amplitude over time, the luminance of each

pixel of each line for �eld 1 and �eld 2 is transmitted. Various synchronization bursts

occur throughout the signal, and the entire screen is refreshed at 60 Hz (and each

�eld at 30 Hz) for black and white.

In DTV, symbols are transmitted (at fDTV ) in segments of 832 symbols as shown

in Figure 23. As in analog TV, the screen is refreshed with two interlaced �elds.

The �rst segment contains �eld synchronization data, similar to the synchronization

bursts at the start of each �eld in analog TV. The upper right subplot in Figure 23

shows the composition of each �eld synchronization segment. Subsequently, line

data is transmitted as data segments before proceeding to the second �eld. The

lower right subplot in Figure 23 shows the composition of each data segment. The

12This means each two-bit data segment is mapped into a three-bit coded data segment for improved
error detection or correction. [70]
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Figure 23. Digital Television (DTV) Frame Structure [62]
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synchronization segment, akin to the synchronization bursts at the start of each line

in analog TV, are the symbols f�1;+1;+1;�1g. [62]

B.3 Space-Based Transmitters

Space-based transmitters provide the advantage of global or near-global coverage

in many instances. The disadvantage is the transmitters are mobile, so the position

must be determined from some other source. This can be done through orbit pre-

diction or ground-network position determination (GPD). In orbit prediction, the

orbital parameters as well as the time of transmission are used to estimate the loca-

tion of the transmitter, while in GPD a network of ground-based receivers at known

locations are used to determine the transmitter�s location.

The orbit of the transmitter is of critical importance in evaluating its use in posi-

tion determination; therefore, the remainder of this section discusses satellites based

upon the orbital type. Figure 24 shows the relative orbit patterns discussed. Geosta-

tionary (GEO) satellites lie in the Equatorial plane at an altitude of approximately

35; 785 km above the Earth�s surface and provide a 24-hour period and a stationary

ground track. TheMolniya orbit, named after the Russian MOLNIYA series of satel-

lites, orbits the Earth about its poles every 12 hours. The highly elliptical path al-

lows the satellite to hover above the North (or South) pole for approximately 8 hours.

Thus, it can be considered as the polar equivalent to a geosynchronous orbit. The re-

maining non-geosynchronous orbits are Low-earth orbit (LEO), Medium-earth orbit

(MEO), and High-earth orbit (HEO), all of which orbit Earth in a non-synchronous
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Figure 24. Common Satellite Orbits [29]
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manner to provide a more varied ground track than either of the aforementioned or-

bits.

Remote sensing and observation satellites provide large coverage areas in terms

of data collection, but the downlink antennas are focused on a few small ground

sites. It may be useful to consider such systems while operating around common

ground sites. To take a more general approach, the systems described in this section

are primarily communication satellite systems, because the downlink provides a large

coverage area.

B.3.1 Geostationary (GEO)

Geostationary (GEO) satellites lie overhead the Equator and provide a stationary

line-of-sight relative to a �xed point on Earth. The original motivation to place

satellites in a GEO orbit was to provide near-global13 coverage with only 3 satellites.

Such coverage is appealling for use in navigation. The position of a GEO satellite

relative to a �xed point on Earth is slowly varying due to orbital deviations. The

disadvantage in navigating with GEO satellites alone is that the line-of-sight vectors

from the user to each satellite may nearly be in the same direction.

The GEO orbit is saturated with satellites. For example, television satellite

transponders distribute television networks nationwide (or internationally) using geo-

stationary satellites to receive, amplify, and retransmit the signal. The downlink is

3:7 � 4:2 GHz, while the uplink is 5:925 � 6:425 GHz. Frequency-division multi-

ple access (FDMA) and multiple transponders on the same satellite platform provide

approximately 100 channels. [51]

13Coverage in the polar regions is poor, hence the need for the Russian�s Molniya orbit.
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B.3.2 Low-Earth Orbit (LEO)

Low-earth orbit (LEO) satellites cost less to deploy than any other orbit; how-

ever, more satellites are required for global coverage than any other orbit. LEO

constellations have regained interest for �satellite phones�, or sat phones, because

the mobile unit requires less power to transmit to a LEO satellite than to satellites

in higher orbits. Additionally, the relatively low altitude enables short delay times,

thereby making near-realtime communication possible [29]. The primary advantage

in navigating with LEO satellites is that the solution geometry can be greatly im-

proved over GEO constellations.

Globalstar [30] and Iridium [42] are examples of LEO constellations designed for

communications that may also be used for navigation. Their orbits, coverage, data

rates, and frequency ranges are discussed next.

B.3.2.1 Globalstar The Globalstar system, developed by Loral Corporation

and Qualcomm Inc., provides mobile communications such as voice, data, fax, paging,

and position location in areas without terrestrial coverage by allowing a Globalstar

mobile unit to transmit to a satellite. The satellite, in turn, downlinks the signal

to the nearest terrestrial network to complete the call. Globalstar has 48 satellites

(with 4 spares) in 8 LEO orbits at an altitude of 1410 km (orbit period 113:8 minutes)

inclined at 52 degrees. [30]

Shown in Figure 25 is Globalstar�s coverage, de�ned as at least four satellites

in view to the mobile receiver in addition to a ground site in view to at least one

satellite. For comparison, Figure 26 shows the Globalstar system footprint at one
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Figure 25. Globalstar Coverage as Reported by Globalstar [30]

Figure 26. Globalstar Coverage Based Upon [29]
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instant in time using Satellite Constellation Visualization. [66]

Globalstar uses code-division multiple access (CDMA) with data rates up to

9; 600 bps, depending on the type of transmission. The system is designed for cov-

erage between �67� latitude. The downlink frequencies are 2483:5� 2500:0 (MHz),

and the uplink frequencies are 1610:0� 1626:5 (MHz) [30].

B.3.2.2 Iridium Satellite LLC Iridium Satellite LLC acquired the oper-

ating assets of Iridium LLC in December 2000. Based on the GSM cellular standard,

Iridium uses time-division multiple access (TDMA) and FDMA techniques with 66

LEO satellites and a ground network connected to the public switched telephone

network (PSTN) through gateways to provide world-wide mobile telephone cover-

age. Since each satellite is connected to its four neighboring satellites through inter-

satellite links, the satellite receiving a call need not be in view of a ground station on

the ground network. Consequently, fewer satellite footprint overlaps are needed, and

land network costs can be reduced by directing the call to the ground station closest

to the call destination. The voice and data transmission rates are both 2400 bps.

The mobile downlink frequencies are 1610 � 1626:5 MHz (L-Band), and the mobile

uplink frequencies are 1616� 1626:5 MHz (L-Band). [42]

B.3.3 Medium-Earth Orbit (MEO)

Medium-earth orbit (MEO) can be considered a compromise between LEO and

GEO orbits in regard to cost to orbit (higher than LEO but lower than GEO) and

the number of satellites required for global coverage (fewer than LEO but more than

GEO). The Doppler shifts (and rates of change) are also a compromise between those
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for LEO and GEO orbits, and the navigation solution geometry of MEO constellations

is improved over the GEO orbit.

One example of a MEO system that may be of particular interest for navigation is

ICO [41]. ICO Global Communications, Uxbridge, England, established in January

1995, is planning a family of MEO satellites with a high-bandwidth land network to

provide quality voice, wireless Internet and other packet-data services at data rates of

up to 144 kbps. ICO�s satellite constellation will consist of 10 active MEO satellites

at an altitude of 10; 390 km with an orbit period of 361 minutes in two planes inclined

at 45 degrees to the equator. Each plane will have �ve operational satellites plus one

spare. ICO�s satellites are designed to be transponders between the user equipment

and the ground station that is part of the terrestrial infrastructure. The terrestrial

infrastructure, rather than satellite-to-satellite communications links, provides the

connection to the destination network or end-user. [41]

The intended ICO frequencies are: 1980 � 2010 MHz (downlink) and 2170 �

2200MHz (uplink). TDMA is intended to provide frequency reuse for multiple users.

ICO�s provision of services will be dependent on a number of regulatory matters, the

availability of adequate �nancing, the successful completion and operation of ICO�s

technology, and the FCC�s approval to re-use ICO�s satellite frequencies for terrestrial

use. [41]

B.4 Summary

This appendix presented several signals of opportunity (SOP) to provide insight

into available SOP. The selection criteria, assumptions, and frequency standards for
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considering signals of opportunity were discussed in Section B.1. Land-based SOP

were presented in Section B.2; space-based SOP were presented in Section B.3.
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APPENDIX C - Probability Density Function

Theorems

This appendix provides theorems regarding functions of random variables and

the resulting manipulation of the underlying probability density functions (pdf�s).

Common theorems are cited without proof. Extensions or special cases of existing

theorems are provided with justi�cation; however, no claim of originality is made.

For all proofs within this appendix, the following de�nitions are made:

boldface , vector-valued variable

a and b , scalar-valued, deterministic

x (�) ; y (�) , scalar-valued, random variables with the joint pdf fx;y (�; �)

z (�) , scalar-valued, random variable with the pdf fz (�)

x (�) ;y (�) , vector-valued, random variables with the joint pdf fx;y (�; �)

z (�) , vector-valued, random variable with the pdf fz (�)

�x; �y; �z; � , scalar-valued �dummy variable�, integration variable,
or point from an underlying sample space

�x; �y; �z; � , vector-valued versions of �x; �y; �z; �

j�j , the magnitude of the enclosed scalar quantity

k�k , the absolute value of the determinate of the enclosed matrix

Note that, for some theorems, additional constraints may be invoked and/or these

de�nitions may be clari�ed.

Theorem 4 z = � (x)

Assume � : Rn ! Rn, ��1 exists, and �, ��1 are continuously di¤erentiable. If

x (�) is a random vector with a probability density function fx (�) and z (�) = � [x (�)],



then

fz (�z) = fx
�
��1 (�z)

� 



@��1 (�z)@�z





 (C.1)

Proof: See [15]. �

Theorem 5 z = x+ y

If z (�) = x (�) + y (�), then

fz (�z) =

Z +1

�1
fx;y (�x; �z � �x) d�x (C.2)

Proof: See [15]. �

Theorem 6 z = xy

If z (�) = x (�) y (�), then

fz (�z) =

Z +1

�1

1

j�xj
fx;y

�
�x;

�z
�x

�
d�x (C.3)

Proof: See [15]. �

Theorem 7 z = ax+ b

If z (�) = ax (�) + b, then

fz (�z) =
1

jajfx
�
�z � b

a

�
(C.4)

Proof: See [15]. �

Theorem 8 z = xy (Extension to Theorem 6)

If z (�) = x (�)y (�), where

z (�) ,
�
z1 (�)
z2 (�)

�
y (�) =

�
y1 (�)
y2 (�)

�
(C.5)
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and x, y1, and y2 are pairwise independent with known fx (�x), fy1
�
�y1
�
, and fy2

�
�y2
�
,

then

fz (�) , fz1;z2 (�1; �2) =

Z +1

�1

1

(�x)
2fx (�x) fy1

�
�1
�x

�
fy2

�
�2
�x

�
d�x (C.6)

Proof: Note the following identity:

fz (�) =

Z +1

�1
fx;z (�x; �) d�x (C.7)

Within the integrand, x takes on values �x, so a change in variables may be accom-

plished with

z (�) = � [
 (�)] = �s
 (�) (C.8)

so that

��1 [z (�)] = 1
�x
z (�) (C.9)

and 




@
�
��1 (�)

�
@�






 =






"

1
�x

0

0 1
�x

#




 = 1

(�x)
2 (C.10)

Then,

fz (�) =

Z +1

�1
fx;z (�x; �) d�x (C.11)

=

Z +1

�1

1

(�x)
2fx;y

�
�x;

1

�x
�

�
d�x (C.12)

which is the desired result. �
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Theorem 9 z = x+ y (Extension to Theorem 5)

For the n-dimensional random vectors z, x, and y, let

z (�) = x (�) + y (�) (C.13)

and fx;y
�
�x; �y

�
be known. Then,

fz (�z) =

Z
Rn
fx;y (�x; �z � �x) d�x (C.14)

Proof: To prove this, start with the de�nition of the distribution function Fz (�z)

given by

Fz (�z) = P [z � �z] (C.15)

= P [x+ y � �z] (C.16)

=

Z
Rn

Z
f�y��z��xg

fx;y
�
�x; �y

�
d�yd�x (C.17)

The integration is taken over the region x+y � �z in Rn�Rn space (i.e., in 
x�
y

space). Di¤erentiating,

fz (�z) =
dn

d�z1d�z2 � � � d�zn
Fz (�z) (C.18)

=
dn

d�z1d�z2 � � � d�zn

(Z
Rn

Z
f�y��z��xg

fx;y
�
�x; �y

�
d�yd�x

)
(C.19)

Changing the order of limits,

fz (�z) =

Z
Rn

dn

d�z1d�z2 � � � d�zn

(Z
f�y��z��xg

fx;y
�
�x; �y

�
d�y

)
d�x (C.20)
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Looking at the integrand of
R
Rn (�) d�x, de�ned as A,

A , dn

d�z1d�z2 � � � d�zn

Z �zn��xn

�1
� � �
Z �z2��x2

�1

Z �z1��x1

�1
�

fx;y1;y2;��� ;yn
�
�x; �y1 ; �y2 ; � � � ; �yn

�
d�y1d�y2 � � � d�yn (C.21)

Changing the order of limits,

A =
d

d�zn

Z �zn��xn

�1
� � � d

d�z2

Z �z2��x2

�1

d

d�z1

Z �z1��x1

�1
�

fx;y1;y2;��� ;yn
�
�x; �y1 ; �y2 ; � � � ; �yn

�
d�y1d�y2 � � � d�yn (C.22)

Using Leibnitz�rule, the derivative of the inner-most integral becomes

d

d�z1

Z �z1��x1

�1
fx;y1;y2;��� ;yn

�
�x; �y1 ; �y2 ; � � � ; �yn

�
d�y1

= fx;y1;y2;��� ;yn
�
�x; �z1 � �x1 ; �y2 ; �y3 ; � � � ; �yn

�
(C.23)

Applying Leibnitz�rule for each integral,

A =
d

d�zn

Z �zn��xn

�1
� � � d

d�z3

Z �z3��x3

�1

d

d�z2

Z �z2��x2

�1
�

fx;y1;y2;��� ;yn
�
�x; �z1 � �x1 ; �y2 ; �y3 ; � � � ; �yn

�
d�y2d�y3 � � � d�yn (C.24)

=
d

d�zn

Z �zn��xn

�1
� � � d

d�z3

Z �z3��x3

�1
�

fx;y1;y2;��� ;yn
�
�x; �z1 � �x1 ; �z2 � �x2 ; �y3 ; � � � ; �yn

�
d�y3 � � � d�yn (C.25)

...

= fx;y1;y2;��� ;yn
�
�x; �z1 � �x1 ; �z2 � �x2 ; � � � ; �zn � �xn

�
(C.26)
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So,

fz (�z) =

Z
Rn
fx;y1;y2;��� ;yn

�
�x; �z1 � �x1 ; �z2 � �x2 ; � � � ; �zn � �xn

�
d�x (C.27)

=

Z
Rn
fx;y (�x; �z � �x) d�x (C.28)

which is the desired result. �
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APPENDIX D - Stochastic Fourier Analysis

This appendix reviews Fourier analysis with an emphasis on its application to

stochastic processes. Fourier analysis is commonly used in engineering applications

to express a signal in terms of its spectral properties. Fourier analysis applied to

stochastic processes is reviewed here, because the results are used extensively in this

research. This appendix is not an exhaustive treatment of the subject; the interested

reader is referred to [15,16,56,59] for a more complete discussion. The developments

and conventions used in this appendix closely match those found in [59].

Section D.1 introduces Fourier analysis applied to deterministic signals. Empha-

sis is placed upon the conditions for which a Fourier transform exists for non-periodic

functions, because these often overlooked details are critical when forming a rigorous

description of the Fourier transform for a stochastic process. Section D.2 describes

stochastic processes and their characteristics used in this research. Section D.3 ap-

plies Fourier analysis to stochastic processes. Finally, Section D.4 provides a sum-

mary.

D.1 The Deterministic Fourier Transform

Fourier analysis is an extensive subject; this subsection focuses on the condi-

tions for which the Fourier transform of a non-periodic function of time exists. This

subtopic of Fourier analysis requires special treatment when applying Fourier analy-

sis to stochastic processes. Other topics, such as the existence of the Fourier trans-

form for periodic functions (which is a somewhat trivial consequence of the Fourier



series representation), Parseval�s theorem, Fourier transform pairs, etc., are well-

documented and are not covered.

Let x (�) be a deterministic, non-periodic14 function of time. Under certain

conditions (discussed in the next paragraph), x (t) may be expressed as

x (t) =

Z +1

�1
~x (f) e+j2�ftdf (D.1)

where ~x (f) is the Fourier transform of x (t) de�ned as

~x (f) =

Z +1

�1
x (t) e�j2�ftdt (D.2)

The Fourier operator, F , and inverse Fourier operator, F�1, are de�ned as

F (�) ,
Z +1

�1
(�) e�j2�ftdt (D.3)

F�1 (�) ,
Z +1

�1
(�) e+j2�ftdf (D.4)

Fourier transforms may be expressed in radians, using ! , 2�f , which results in

F (�) , a

Z +1

�1
(�) e�j!tdt (D.5)

F�1 (�) , b

Z +1

�1
(�) e+j!td! (D.6)

where the product, ab, must be chosen to equal 1
2�
.

A su¢ cient condition on x (t) for ~x (f) to exist for all f 2 R1 is that x (t)

be absolutely integrable over t 2 R1. However, mere existence of ~x (f) does not

guarantee that the right-hand side of Equation (D:1) will equal x (t) for every t.

When x is of bounded variation about an interval containing t, then the right-hand

14Fourier analysis may be applied to periodic and non-periodic functions. Only non-periodic functions
are considered here, since the analysis of non-periodic functions will be of particular interest when stochastic
processes are considered.
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side of Equation (D:1) converges to x (t) at all continuity points [75]. The above two

conditions are presented more concisely in the following de�nition.

De�nition (Fourier Transform Existence Conditions)

The Fourier transform of x (t), denoted by ~x (f), is said to exist for all f 2 R1

when (1) x (t) is absolutely integrable over t 2 R1, i.e.,Z +1

�1
jx (t)j dt <1 (D.7)

and (2) x (t) is of bounded variation for all t 2 R1. These two conditions will be

jointly referred to in this document as the �Fourier transform existence conditions.�

When the Fourier transform conditions are met, Equations (D:1) and (D:2) provide

a meaningful �Fourier transform pair�denoted by

x (t)
F() ~x (f) (D.8)

The Fourier transform existence conditions provide insight into �typical� func-

tions for which a Fourier transform may exist. The �rst Fourier transform existence

condition (described by Equation (D:7)) implies that the limit of x (t) at each �end-

point,� if each exists, is

lim
t!�1

x (t) = lim
t!+1

x (t) = 0 (D.9)

Whether or not the limits above exist, x (t) can be shown to �decay�as jtj becomes

large using the following theorem.
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Theorem 10

Let " > 0 and n 2 N and de�ne the sets �n as

�n (") , ft : jx (t)j > "; n � jtj � n+ 1g (D.10)

Then, the measure of f�ng tends to zero as n!1.

The second Fourier transform existence condition may be interpreted loosely as

x (t) being �well-behaved.� Thus, a �typical�function for which a Fourier transform

exists may be considered a decaying, well-behaved function of time. This insight will

be particularly useful when stochastic processes are considered.

When functions of interest do not satisfy the Fourier transform existence condi-

tions, the Fourier transform is de�ned in a less rigorous manner. For example, the

constant function

x (t) = 1 8t 2 R1 (D.11)

does not satisfy Equation (D:7); however, a Fourier transform-like expression is often

desired. The Fourier transform pair for this case is de�ned using the so-called �Dirac

delta function,��, as

~x (f) , � (f) for x (t) = 1 (D.12)

where � (f) is in�nity at f = 0 and zero elsewhere withZ +1

�1
� (f) df , 1 (D.13)
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D.2 Stochastic Processes

D.2.1 De�nition

A stochastic process, x (�; �), is a function de�ned on R1 � �, where the �rst

argument denotes �time�with t 2 R1, and the second argument denotes samples from

a sample space with � 2 �. (Some authors use ! 2 
 rather than � 2 �; however, the

latter notation avoids confusion with ! , 2�f used in Fourier analysis.) For some

�xed t, each x (t; �) is a random variable (and is a function of �). For some �xed �,

each x (�; �) is a sample from a stochastic process (and is a function of t). For some

�xed t and �, each x (t; �) is a point in Rn. An example, scalar (i.e., n = 1) stochastic

process, x (�; �), is depicted graphically in Figure 27 over the region t 2 [ti; tf ] � R1

and for � 2 f�1; �2; �3; �4g � � (i.e., four samples of the process are shown).

A stochastic process at a single time is a random variable which may be char-

acterized through its probability distribution function, or, if it exists, its probability

density function. In general, the probabilistic nature of a stochastic process is de�ned

through the in�nite-dimensional joint probability distribution function of the random

variables generated by the stochastic process at every time instance. Doob [16] pro-

vides a theorem which permits a stochastic process to be de�ned through the joint

probability distribution function

Fx(t1;�);:::;x(tN ;�) (�1; : : : ; �N) (D.14)
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Figure 27. Stochastic Process Example
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for all time sequences ft1; : : : ; tNg. If it exists, an equally informative characterization

may be found through the joint probability density function

fx(t1;�);:::;x(tN ;�) (�1; : : : ; �N) (D.15)

for all time sequences ft1; : : : ; tNg. A stochastic process is termed a Gaussian process

if the joint probability distribution function in Equation (D:14) is Gaussian for all

time sequences ft1; : : : ; tNg. Likewise, a Gaussian process may be de�ned through

the joint probability density function given in Equation (D:15) for all time sequences

ft1; : : : ; tNg, if it exists.

D.2.2 Statistics

Having reviewed the de�nition of a stochastic process, some common statistics

used with stochastic process are now presented. The mean of x (�; �) is de�ned for

all t 2 R1 as

�x (t) , E fx (t; �)g (D.16)

=

Z
Rn
�fx(t;�) (�) d� (D.17)

As indicated, �x (t) is, in general, time-varying. The covariance kernel of x (�; �) is

de�ned for all t1; t2 2 R1 as

Pxx (t1; t2) , E
n
[x (t1; �)� �x (t1)] [x (t2; �)� �x (t2)]

T
o

(D.18)

=

Z
Rn�Rn

�
[�1 � �x (t1)] [�2 � �x (t2)]

T
�

fx(t1;�);x(t2;�) (�1; �2)

�
d�1d�2 (D.19)
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When t1 = t2, the second central moment, or covariance matrix, is

Pxx (t) = Pxx (t; t) (D.20)

The correlation kernel of x (t; �) is de�ned for all t1; t2 2 R1 as

	xx (t1; t2) , E
n
x (t1; �)x (t2; �)T

o
(D.21)

When t1 = t2, the second non-central moment, or correlation matrix, is

	xx (t) = 	xx (t; t) (D.22)

The covariance kernel and correlation kernel are related by

	xx (t1; t2) = Pxx (t1; t2) + �x (t1)�x (t2)
T (D.23)

These de�nitions can be generalized to two stochastic processes, denoted by

x (�; �) and y (�; �). The cross-covariance kernel is de�ned for all t1; t2 2 R1 as

Pxy (t1; t2) , E
n
[x (t1; �)� �x (t1)]

�
y (t2; �)� �y (t2)

�To
(D.24)

and the cross-covariance matrix is de�ned for all t 2 R1 as

Pxy (t) , Pxy (t; t) (D.25)

The cross-correlation kernel is de�ned for all t1; t2 2 R1 as

	xy (t1; t2) , E
n
x (t1; �)y (t2; �)T

o
(D.26)

and the cross-correlation matrix is de�ned for all t 2 R1 as

	xy (t) , 	xy (t; t) (D.27)

208



D.2.3 Stationarity

A stochastic process, x (�; �), is said to be strict-sense stationary (SSS) (or some-

times called strictly stationary, completely stationary, or strongly stationary) if, for

all admissible sets ft1; : : : ; tNg and any � (such that all sets ft1 + � ; : : : ; tN + �g are

admissible), the joint probability distribution functions satisfy the condition

Fx(t1;�);:::;x(tN ;�) (�1; : : : ; �N) = Fx(t1+�;�);:::;x(tN+�;�) (�1; : : : ; �N) (D.28)

for all

(�1; : : : ; �N) � Rn � � � � � Rn| {z }
N

(D.29)

Essentially, a process is SSS if the joint probability distribution function is invariant

with respect to a shift of the absolute time scale.

A stochastic process, x (�; �), is said to be wide-sense stationary (WSS) (or sta-

tionary up to order 2 or weakly stationary) if the following are met:

1. �x (t) is time-invariant, denoted by the constant vector �x;

2. 	xx (t) is �nite and time-invariant, denoted by the constant matrix 	xx (0);

3. 	xx (t1; t2) is a function of � , t1 � t2 only, denoted by 	xx (�).

A SSS process is WSS; however, the converse is not true. (A notable exception

is that a WSS, Gaussian stochastic process is also a SSS process.) It follows from

the de�nition of a WSS stochastic process that the covariance matrix is �nite and

time-invariant, denoted by the constant matrix Pxx, and the covariance kernel is a

function of the time di¤erence only, denoted by Pxx (�). A single argument on Pxx
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and 	xx may indicate the covariance kernel and correlation kernel, respectively, of

a WSS process, or the covariance matrix and correlation matrix, respectively, of a

non-WSS process.

D.2.4 Ergodicity

Ergodicity permits averages over time to be used to indicate ensemble averages

over realizations. Given one particular realization of the stationary random process,

x (�; �), ergodicity implies

�x = lim
T!1

1

T

Z +T
2

�T
2

x (t; �) dt (D.30)

	xx (�) = lim
T!1

1

T

Z +T
2

�T
2

x (t; �)x (t+ � ; �) dt (D.31)

For realizations of two stationary random processes, denoted by x (�; �) and y (�;�), er-

godicity implies, in addition to the previous implications for the individual processes,

that

	xy (�) = lim
T!1

1

T

Z +T
2

�T
2

x (t; �)y (t+ � ;�) dt (D.32)

In practice, the stationarity of a process is validated under the assumption of ergodic-

ity. A process is ergodic only if it is stationary. In this document (unless indicated

otherwise), when a process is assumed to be stationary, it is assumed to be both

wide-sense stationary and ergodic.

D.2.5 Continuity

For a particular realization, the continuity of x (�; �) is de�ned in the ordinary

sense. A stochastic process, x (�; �), is stochastically continuous or �mean-square
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continuous�at t = t0 if

l.i.m.
t!t0

x (t; �) = x (t0; �) (D.33)

where l.i.m. denotes the �limit in the mean-square sense.� The condition �if Equa-

tion (D:33)�may be interpreted as if and only if

lim
t!t0

E
�
[x (t; �)� x (t0; �)]2

	
= 0 (D.34)

A stochastic process which is stochastically continuous at t = t0 for all t0 is said

to be stochastically continuous everywhere (or simply described as a �stochastically

continuous process�). Note that stochastic continuity is de�ned over all realizations;

in general, this condition does not imply continuity (in the ordinary sense) for any

particular realization.

For a stationary, stochastic process, x (�; �), by de�nition, (1) E
�
[x (t; �)]2

	
is

time-invariant, that is,

E
�
[x (t; �)]2

	
, 	xx (0) = constant (D.35)

for all t 2 R1, and (2) E fx (t; �)x (t0; �)g is a function of the time-di¤erence t � t0

only, and

	xx (t� t0) , E fx (t; �)x (t0; �)g (D.36)

Thus, under the assumption of stationarity and using

E
�
[x (t; �)� x (t0; �)]2

	
= E

�
[x (t; �)]2

	
+ E

�
[x (t0; �)]2

	
�2E fx (t; �)x (t0; �)g (D.37)

211



Equation (D:34) becomes

lim
t!t0

[2	xx (0)� 2	xx (t� t0)] = 0 (D.38)

lim
t!t0

	xx (t� t0) = 	xx (0) (D.39)

Using � , t� t0, this condition may be rewritten as

lim
�!0

	xx (�) = 	xx (0) (D.40)

Therefore, a stationary, stochastic process, x (�; �), is stochastically continuous at t =

t0 if and only if 	xx (�) is continuous (in the ordinary sense) at � = 0. Under

the stationarity assumption, the following also hold [59]: (1) If 	xx (�) is continuous

(in the ordinary sense) at � = 0, then 	xx (�) is continuous (in the ordinary sense)

everywhere (for all � 2 R1), (2) x (�; �) is stochastically continuous everywhere if and

only if x (�; �) is stochastically continuous at t = t0, and (3) x (�; �) is stochastically

continuous everywhere if and only if 	xx (�) is continuous (in the ordinary sense) at

� = 0.

D.3 Stochastic Fourier Analysis

In this section, the de�nition of the Fourier transform of a stochastic process

is presented. The aim of stochastic Fourier analysis is to characterize the spectral

properties of a stationary, stochastic process. Care must be taken to ensure the results

are meaningful. The �rst approach details the (non-stochastic) Fourier transform

of a stationary stochastic process. The second, more elegant, approach introduces

the Fourier Stieltjes transform [59] to describe the spectral properties of a stationary

stochastic process. These descriptions are presented for the scalar case; the vector
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case is a natural extension of these results. Finally, brief mention is made to a method

whereby stochastic Fourier analysis may be applied without assuming stationarity.

D.3.1 Fourier Transform

Consider the stationary, stochastic process x (�; �). Ideally, the Fourier transform

of x (t; �) for all t 2 R1 would be found over all realizations through

~x (!; �) =
Z +1

�1
x (t; �) e�j!tdt (D.41)

In general, a particular realization, x (�; �), is not periodic in time, nor is there any

guarantee that the Fourier existence conditions are met. In fact, it may seem as

though an impasse is met where stationary processes imply a sense of steady-state

behavior over time, while the Fourier existence conditions imply a function decays as

jtj ! 1. The following discussion is a rigorous treatment of this con�ict.

Given the stationary, stochastic process x (�; �) and the time interval T > 0, let

xT (t; �) be de�ned for all admissible t as

xT (t; �) ,

8<: x (t; �) �T
2
� t � T

2

0 otherwise
(D.42)

Assuming x (t; �) is continuous (and, consequently, xT (t; �) satis�es the Fourier exis-

tence conditions), let xT (t; �) be described through its Fourier transform, ~xT (!; �),

as

xT (t; �) =
1p
2�

Z +1

�1
~xT (!; �) ej!td! (D.43)

where, for all ! 2 R1,

~xT (!; �) =
1p
2�

Z +1

�1
xT (t; �) e�j!tdt (D.44)
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~xT (!; �) may be expressed in terms of the original process as

~xT (!; �) =
1p
2�

Z +T
2

�T
2

x (t; �) e�j!tdt (D.45)

Consider the total energy in some small frequency increment, d!:

j~xT (!; �)j2 d! (D.46)

It is tempting to let T !1 so that xT (t; �) and x (t; �) are identical for all t. Then,

lim
T!1

j~xT (!; �)j2 (D.47)

would describe the energy of x (t; �) over !. However, this limit does not exist for

a stationary process. As may be done for the Fourier transform of periodic func-

tions, consider the signal power, or energy per unit of time, in some small frequency

increment, d!, as

j~xT (!; �)j2

T
d! (D.48)

Then, the limit

lim
T!1

j~xT (!; �)j2

T
(D.49)

may exist and may be interpreted as the power density.

If this limit exists for all realizations, then the stochastic process ~xT (!; �) could

be constructed. An alternate approach is to consider ~xT (!; �) over the average of

all realizations. Assuming the limit in Equation (D:49) exists (which permits the

order in which the limits are taken to be interchanged; consider the Fubini theorem
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su¢ cient conditions [64]), de�ne

s (!) , lim
T!1

E

(
j~xT (!; �)j2

T

)
(D.50)

If it exists, s (!) d! may be interpreted as the average (over all realizations) power

contributed by x (t; �) for all t 2 R1 in some small increment, d!; consequently, s (!)

is called the power spectral density function of x (�; �). The following theorem and

corollary present conditions when s (!) exists.

Theorem 11

Let x (�; �) be a zero-mean, continuous stationary process with the power spectral

density function, sxx (!), which exists for all !, and autocorrelation function, 	xx (�).

Then, sxx (!) is the Fourier transform of 	xx (�), i.e.,

sxx (!) =
1

2�

Z +1

�1
	xx (�) e

�j!�d� (D.51)

Proof: See [59]. �

Theorem 12

A su¢ cient condition for sxx (!) to exist for all ! 2 R1 is that 	xx (�) possesses

a Fourier transform, i.e., 	xx (�) is absolutely integrable:Z +1

�1
j	xx (�)j d� <1 (D.52)

Proof: See [59]. �
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Additionally, the following property may be found.

Theorem 13

If 	xx (�) is absolutely integrable and is continuous at � = 0, then

	xx (�) =

Z +1

�1
sxx (!) e

+j!�d! (D.53)

Proof: See [59]. �

The analysis thus far applies to real-valued and complex-valued processes. The

following corollary provides some simpli�cation for real-valued processes.

Theorem 14

For the real-valued process x (�; �), 	xx (�) is an even function in � . Additionally,

if 	xx (�) is absolutely integrable, then sxx (!) is an even function in ! and may be

expressed as

sxx (!) =
1

2�

Z +1

�1
	xx (�) cos (!�) d� (D.54)

Proof: See [59]. �

D.3.2 The Fourier Stieltjes Transform

In general, a stochastic process is neither periodic nor non-periodic with �nite

energy; therefore, a (non-stochastic) Fourier transform of the stochastic process does

not exist. In the previous section, the Fourier transform of a stochastic process

was rigorously described using the Fourier transform of a time-windowed version of

the stochastic process followed by averaging the result over all realizations. A more

general Fourier transform, called the Fourier Stieltjes transform, may be used to

capture a complete realization (without taking the limit of a time-windowed version)
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and does not require averaging over realizations. The following theorem presents

formally the properties of the Fourier Stieltjes transform.

Theorem 15 (Fourier Stieltjes Transform Theorem)

Let x (�; �) be a zero-mean, stochastically continuous, stationary random process.

Then there exists an orthogonal process, Z (�; �), such that, for all t, x (t; �) may be

written in the form

x (t; �) =
Z +1

�1
ej!tdZ (!; �) (D.55)

where the integral is de�ned in the mean-square sense. The process Z (�; �) has the

following properties:

E fdZ (!; �)g = 0 for all ! (D.56)

E
�
jdZ (!; �)j2

	
= dSxx (!) for all ! (D.57)

E fdZ� (!; �) dZ (!0; �)g = 0 for any !; !0 such that ! 6= !0 (D.58)

Proof: See [6] or [59]. �

When x (�; �) has a continuous spectrum, the integrated power spectral density

function, Sxx (!), may be de�ned as

Sxx (!) ,
Z !

�1
sxx (�) d� (D.59)
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so that the di¤erentials are related by

dSxx (!) = sxx (!) d! (D.60)

In this case, Equation (D:57) may be rewritten as

E
�
jdZ (!; �)j2

	
= sxx (!) d! for all ! 2 R1 (D.61)

The Fourier Stieltjes transform de�nes the spectral representation of the sta-

tionary stochastic process, x (�; �), in Equation (D:55). For each realization of x (�; �),

dZ (�; �) takes on a di¤erent realization. Furthermore, for a particular !, dZ (!; �) is a

random variable. If, for all !, dZ (!; �) were di¤erentiable, i.e., the following exists:

dZ (!; �)
d!

= ~x (!; �) (D.62)

then the Fourier Stieltjes transform is reduced to an ordinary Fourier transform.

However, dZ (!; �) is not di¤erentiable as a stochastic process based upon the same

principles that an ordinary Fourier transform does not exist for a stochastic process.

The structure of dZ (!; �) in the stochastic integral permits consideration of the spec-

tral properties of x (�; �) when the ordinary Fourier transform does not exist.

The Fourier Stieltjes transform permits x (t; �), for all admissible t, to be rep-

resented as (the limit of) the sum of sines and cosines with random coe¢ cients,

dZ (�; �), or more precisely, with random magnitudes, jdZ (�; �)j and random phases,

arg fdZ (�; �)g. De�ne the random process Z (!; �) for all ! as

Z (!; �) ,
Z !

�1
dZ (�; �) (D.63)
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where the integral is a stochastic integral de�ned in the mean-square sense. From

Equation (D:58), the increments of Z (!; �) at di¤erent values of ! are uncorrelated.

(Thus, Z (�; �) is called an orthogonal process). Furthermore, the properties of Z (�; �)

are related to the spectral properties of x (�; �), where, in a formal sense, the stochastic

derivative of Z (�; �) plays the role of the Fourier transform for x (�; �).

Finally, by de�ning two additional terms, the Wiener-Khintchine Theorem may

be used to relate the autocorrelation and power spectral density functions [59]. (This

is a generalization of Theorem 11.) Let the normalized power spectral density function

of x (�; �), denoted by fxx (!), be de�ned as

fxx (!) ,
sxx (!)R +1

�1 sxx (!) d!
(D.64)

or,

fxx (!) =
sxx (!)

	xx (0)
(D.65)

It is assumed 	xx (0) 6= 0, since 	xx (0) = 0 is the trivial case that x (�; �) is deter-

ministic. Let the integrated normalized power spectral density function, Fxx (!), be

de�ned as

Fxx (!) ,
Z !

�1
fxx (�) d� (D.66)

so that the di¤erentials are related by

dFxx (!) = fxx (!) d! (D.67)
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Theorem 16 (Wiener-Khintchine Theorem)

A necessary and su¢ cient condition for 	xx (�) to be the autocorrelation function

of some stochastically continuous stationary process, x (�; �), is that there exists a

function, Fxx (�), having the properties of a distribution function on ! 2 (�1;+1),

(i.e., Fxx (�1) = 0, Fxx (+1) = 1, and Fxx (�) non-decreasing), such that, for all � ,

	xx (�) may be expressed in the form,

	xx (�)

	xx (0)
=

Z +1

�1
ej!�dFxx (!) (D.68)

where the integral is the taken in the mean-square sense and

	xx (0) 6= 0 (D.69)

Furthermore,

	xx (�) =

Z +1

�1
ej!�dSxx (!) (D.70)

where the integral is the taken in the mean-square sense.

Proof: See [59]. �

Theorems 15 and 16 holds true for both real-valued and complex-valued processes.

The results of Theorem 15 for a real-valued, zero-mean, stochastically continuous, sta-

tionary process, x (�; �), become

E fdU (!; �) dU (!0; �)g = 0 for any !; !0 such that ! 6= !0 (D.71)

E fdV (!; �) dV (!0; �)g = 0 for any !; !0 such that ! 6= !0 (D.72)
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E
�
jdU (!; �)j2

	
= E

�
jdV (!; �)j2

	
= dHx+ (!) (D.73)

where

dU (�; �) = Re fdZ (�; �)g (D.74)

dV (�; �) = � Im fdZ (�; �)g (D.75)

andHxx+ (!) is the integrated spectrum for positive frequencies only15. Furthermore,

dU (�; �) and dV (�; �) are cross-orthogonal, i.e.,

E fdU (!; �) dV (!0; �)g = 0 for all !; !0 (D.76)

D.3.3 The General Orthogonal Expansion

Throughout this analysis, WSS processes have been assumed. This assumption

permits �in the mean-square sense� de�nitions (such as stochastic continuity, the

stochastic derivative, and the stochastic integral) to be properly de�ned. The gen-

eral orthogonal expansion avoids these expressions while maintaining rigor. While

the details are beyond the scope of this research, the results are a generalization of

the Fourier Stieltjes transform that include processes for which stationarity is not

assumed [6].

D.4 Summary

This appendix presented Fourier analysis, stochastic processes, and the appli-

cation of Fourier analysis to stochastic processes. Two main theorems provide the

15It can be shown that Hxx+ (!) =
2
�

R !
0

sin(�!)
�

	xx (�) d� [59].
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background for stochastic Fourier analysis. The Fourier Stieltjes transform, or the

spectral representation of the stationary stochastic process, x (�; �), is given for all

admissible t in Equation (D:55) and repeated here as

x (t; �) =
Z +1

�1
ej!tdZ (!; �) (D.55)

From the Fourier Stieltjes transform theorem given in Theorem 15, when x (�; �) is a

zero-mean, stochastically continuous, stationary random process, the process Z (!; �)

as de�ned using Equations (D:55) and (D:63) has the following properties:

E fdZ (!; �)g = 0 for all ! (D.56)

E
�
jdZ (!; �)j2

	
= dSxx (!) for all ! (D.57)

E fdZ� (!; �) dZ (!0; �)g = 0 for any !; !0 such that ! 6= !0 (D.58)

From the Wiener-Khintchine theorem given in Theorem 16, when x (�; �) is a zero-

mean, stochastically continuous, stationary random process, the autocorrelation func-

tion of x (�; �), 	xx (�), may be expressed in terms of the integrated power spectral

density function, Sxx (!), through Equation (D:70), repeated here as

	xx (�) =

Z +1

�1
ej!�dSxx (!) (D.70)

The Fourier Stieltjes transform may be reduced to the Fourier transform when

dZ (�; �) and dSxx (�) are di¤erentiable for all !, i.e., Equations (D:62) and (D:60) are
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meaningful for all ! as

dZ (!; �) = ~x (!; �) d! (D.62)

dSxx (!) = sxx (!) d! (D.60)
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APPENDIX E - Finite-Timelength Observation

Autocorrelation Kernel Theorem

In this appendix, the autocorrelation kernel for a �nite-timelength observation

of a stochastic process is found in terms of the autocorrelation kernel for the entire

stochastic process. Appendix D provides the theory for Fourier analysis of stochastic

processes. Under certain restrictions, the autocorrelation kernel of a stationary

process may be expressed in terms of the power spectral density of the process. In

this appendix, a single realization of a stochastic process is observed over some �nite

time interval, T . Under the assumptions of ergodicity and stationarity, the results

herein enable the autocorrelation kernel for a �nite timelength observation to be

expressed in terms of the power spectral density function of the original stochastic

process. The remainder of this appendix presents a theorem which states this more

formally, a proof of the theorem, and a few remarks.

Theorem 17

Let x (�; �) be an arbitrary zero-mean, wide-sense stationary, ergodic, Gaussian

stochastic process (in time) for which the power spectral density function, ~sxx (f),

exists and is given element-wise as

	xkxl (�)
F() ~sxkxl (f) (E.1)

Let the Gaussian stochastic process (in frequency), ~z (�; �), be formed as the Fourier

transform of a time-gated observation of x (�; �), i.e., ~z (�; �) is given for all f as

~z (f; �) , F
n
x (t; �)

Y
(t; T )

o
(E.2)



where
Q
(t; T ) is a window with height 1

T
and duration T :

Y
(t; T ) ,

8<:
1
T

t 2 [t0; t0 + T ]

0 otherwise
(E.3)

Then, the autocorrelation kernel of ~z (�; �) is given element-wise for all f as

E f~zk (f; �) ~z�l (f � �; �)g � 1

T
~sxkxl (f) �� (�) (E.4)

where ~zk is the kth component of ~z, ~zl is the lth component of ~z, and �� (�) is a

modi�ed Kronecker delta function (not a Dirac delta function) de�ned as

�� (�) ,

8<: 1 � = 0

0 otherwise
(E.5)

Proof: The k; l element of E f~z (�; �)~z� (�; �)g for some arbitrary f1 and f2 is

E f~zk (f1; �) ~z�l (f2; �)g = E

�Z +1

�1
xk (u; �)

Y
(u; T ) e�j2�f1udu �Z +1

�1
xl (v; �)

Y
(v; T ) e+j2�f2vdv

�
(E.6)

Recalling the de�nition of
Q
in Equation (E :3 ),

E f~zk (f1; �) ~z�l (f2; �)g = E

("
1

T

Z +T
2

�T
2

xk (u; �) e�j2�f1udu
#

�"
1

T

Z +T
2

�T
2

xl (v; �) e+j2�f2vdv
#)

(E.7)

=
1

T 2

Z +T
2

�T
2

Z +T
2

�T
2

E fxk (u; �)xl (v; �)g e�j2�(f1u�f2v)dudv

(E.8)
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so that

E f~zk (f1; �) ~z�l (f2; �)g =
1

T 2

Z +T
2

�T
2

Z +T
2

�T
2

Rxkxl (u� v) e�j2�(f1u�f2v)dudv (E.9)

Using the Wiener-Khintchine Theorem,

	xkxl (�) =

Z +1

�1
~sxkxl (f) e

j2�f�d� (E.10)

Equation (E :9 ) becomes

E f~zk (f1; �) ~z�l (f2; �)g =
1

T 2

Z +T
2

�T
2

Z +T
2

�T
2

�Z +1

�1
~sxkxl (f) e

+j2�f(u�v)df

�
�

e�j2�(f1u�f2v)dudv

(E.11)

=
1

T 2

Z +1

�1

Z +T
2

�T
2

Z +T
2

�T
2

~sxkxl (f) e
+j2�f(u�v)

�

e�j2�(f1u�f2v)dudvdf (E.12)

=
1

T 2

Z +1

�1
~sxkxl (f)

"Z +T
2

�T
2

e+j2�u(f�f1)du

#
�"Z +T

2

�T
2

e�j2�v(f�f2)dv

#
df (E.13)
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Integrating the inner integrals,

E f~zk (f1; �) ~z�l (f2; �)g =
1

T 2

Z +1

�1
~sxkxl (f)

�
1

j2� (f � f1)
e+j2�u(f�f1)

�+T
2

�T
2

�

�
1

�j2� (f � f2)
e�j2�v(f�f2)

�+T
2

�T
2

df (E.14)

=
1

T 2

Z +1

�1
~sxkxl (f)

�
e+j�T (f�f1) � e�j�T (f�f1)

j2� (f � f1)

�
��

e+j�T (f�f2) � e�j�T (f�f2)

j2� (f � f2)

�
df (E.15)

Using Euler�s Identity, Equation (E:15) becomes

E f~zk (f1; �) ~z�l (f2; �)g =
1

T 2

Z +1

�1
~sxkxl (f)

�
j2 sin [�T (f � f1)]

j2� (f � f1)

�
��

j2 sin [�T (f � f2)]

j2� (f � f2)

�
df (E.16)

=

Z +1

�1
~sxkxl (f)

�
sin [�T (f � f1)]

�T (f � f1)

�
��

sin [�T (f � f2)]

�T (f � f2)

�
df (E.17)

The two sinc functions can be approximated as zero outside a region on the order of

1
T
. Within the non-zero region, the two sinc functions are essentially orthogonal so

that

E f~zk (f1; �) ~z�l (f2; �)g =
( R +1

�1 ~sxkxl (f)
�
sin[�T (f�f1)]
�T (f�f1)

��
sin[�T (f�f2)]
�T (f�f2)

�
df f1 = f2

0 f1 6= f2

(E.18)

But, for f1 = f2,

E f~zk (f1; �) ~z�l (f1; �)g =
Z +1

�1
~sxkxl (f)

�
sin [�T (f � f1)]

�T (f � f1)

�2
df (E.19)
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Assuming ~sxkxl (f) can be approximated as a constant if it does not vary signi�cantly

over frequency ranges of the order 1
T
rad/sec (i.e., the correlation time of 	xkxl (�)

is short compared with T ) and usingZ +1

�1

�
sin [�T (f � f1)]

�T (f � f1)

�2
df =

1

T
(E.20)

Equation (E:19) becomes

E f~zk (f1; �) ~z�l (f1; �)g �
1

T
~sxkxl (f1) (E.21)

Substituting Equation (E:21) into Equation (E:18) and choosing f1 = f and f2 =

f � �, the desired result is obtained. �

A notable result is that ~z (�; �) is an orthogonal process and is not stationary.

(These results were not assumed; they are a consequence of x (�; �) being stationary.)

Similar results can be found by assuming x (�; �) is periodic, ~z (fk; �) is the kth Fourier

coe¢ cient found over one period T . Then, the autocorrelation kernel is found by

letting the number of Fourier coe¢ cients taken be large and the spacing between

Fourier coe¢ cient frequencies be small [45]. The time-gate function,
Q
, de�ned in

Equation (E:3) includes a scaling factor of 1
T
, so that the results presented herein are

consistent with that of previous research.

228



BIBLIOGRAPHY
[1] Abel, J. S. “A Divide and Conquer Approach to Least-Squares Estimation,”

IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 2,
pp. 423-427, March 1990.

[2] Aloi, D. N. and F. Van Graas. “Ground-Multipath Mitigation via Polarization
Steering of GPS Signal,” IEEE Transactions on Aerospace and Electronic
Systems, Vol. 40, No. 2, pp. 536-552, April 2004.

[3] Baniak, J., G. Baker, A. Cunningham, L. Martin. Lockheed Martin Mission
Systems Silent SentryTM Passive Surveillance, Gaithersburg, MD, June 1999.

[4] Bard, J. D. and F. M. Ham. “Time Difference of Arrival Dilution of Precision
and Applications,” IEEE Transactions on Signal Processing, Vol. 47, No. 2,
pp. 521-523, 1999.

[5] Bard, J. D., F. M. Ham, and W. L. Jones. “An Algebraic Solution to the
Time Difference of Arrival Equations,” Proceedings of the IEEE Southeastern
Conference, Tampa, FL, April 1996.

[6] Bartlett, M. S. An Introduction to Stochastic Processes with Special References
to Methods and Applications, 1st Edition, Cambridge University Press,
London, 1955.

[7] Belove, C. Handbook of Modern Electronics and Electrical Engineering, John
Wiley and Sons, 1986.

[8] Brockwell, P. J. and R. A. Davis. Time Series: Theory and Methods, 2nd Ed.,
Springer-Verlag, NY, 1991.

[9] Carter, G. C, C. H. Knapp, and A. H. Nuttall. “Estimation of the Magnitude-
Squared Coherence Function via Overlapped Fast Fourier Transform
Processing,” IEEE Transactions on Audio Electro-Acoustics, Vol. AU-21,
pp. 337-344, August 1976.

[10] Cazzani, L., C. Colesanti, D. Leva, G. Nesti, C. Prati, F. Rocca, D. Tarchi. “A
Ground-Based Parasitic SAR Experiment,” IEEE Transactions on Geoscience
and Remote Sensing, Vol. 38, No. 5, September 2000.

[11] Chan, Y. T. and K. C. Ho. “A Simple and Efficient Estimator for Hyperbolic
Location,” IEEE Transactions on Signal Processing, Vol. 42, pp. 1905-1915,
August 1994.

[12] Cornwall, J. et al. Non-GPS Methods of Geolocation, The MITRE Corporation,
Report to the Defense Advanced Research Projects Agency (DARPA), McLean,
VA, January 2002.



[13] Counselman, C. C. III, Method and System for Determining Position Using
Signals from Satellites, U. S. Patent No. 4,667,203, May 1987.

[14] Counselman, C. C. III, et al., “Miniature Interferometer Terminals for Earth
Surveying: Ambiguity and Multipath with Global Positioning System,” IEEE
Transactions on Geoscience & Remote Sensing, Vol. GE-19, No. 4, pp. 244-52,
October 1981.

[15] Davenport, W. B., Jr. Probability and Random Processes, McGraw-Hill, New
York, NY, 1970.

[16] Doob, J. L. Stochastic Processes, John Wiley and Sons, New York, NY, 1953.
[17] Downs, G. Interplanetary Navigation Using Pulsating Radio Sources, NASA

TR N74-34150, Pasadena, CA, October 1974.
[18] Eggert, R. J. Evaluating the Navigation Potential of the National Television

System Committee Broadcast Signal, M.S. Thesis, Air Force Institute of
Technology, Wright-Patterson AFB, OH, March 2004.

[19] Eggert, R. J. and J. F. Raquet, “Evaluating the Navigation Potential of the
NTSC Analog Television Broadcast Signal,” 2004 International Symposium on
GPS/GNSS, Sydney, Australia, December 2004.

[20] Fang, B. T. “Simple Solutions for Hyperbolic and Related Position Fixes,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 26, No. 5,
pp. 748-753, September 1990.

[21] Federal Communications Commission (FCC) Rules and Regulations, Code of
Federal Regulations, Government Printing Office, Vol. 3, Part 73, Subpart A,
Washington, DC, 2002.

[22] Federal Communications Commission (FCC) Rules and Regulations, Code of
Federal Regulations, Government Printing Office, Vol. 3, Part 73, Subparts B
and C, Washington, DC, 2002.

[23] Federal Communications Commission (FCC) Rules and Regulations, Code of
Federal Regulations, Government Printing Office, Section 73.319, Washington,
DC, 2002.

[24] Federal Communications Commission (FCC) and the National Telecommu-
nications and Information Administration (NITA), Manual of Regulations
and Procedures for Federal Radio Frequency Management, available at
www.ntia.doc.gov

[25] Fink, D. G. Television Engineering, 2nd Ed., McGraw-Hill, New York,
NY, 1952.

230



[26] Fisher, K. A. Enhanced 911: Emergency Location and Indoor Global Position
System, Report to Michael A. Temple„ EENG 673 Air Force Institute of
Technology, Wright-Patterson AFB, OH, Fall 2002.

[27] Foy, W. H. “Position Location Solutions by Taylor-Series Estimation,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 12, No. 2, pp. 187-194,
March 1976.

[28] Friedlander, B. “On the Cramer-Rao Bound for Time Delay and Doppler
Estimation,” IEEE Transactions on Information Theory, Vol. IT-30, No. 3,
May 1984.

[29] Globalstar Information Website: http://www.ee.surrey.ac.uk/Personal· · ·
/L.Wood/constellations/globalstar.html

[30] Globalstar Website: www.globalstar.com
[31] Goldman, S. Frequency Analysis, Modulation and Noise, McGraw-Hill, New

York, NY, 1948.
[32] Griffiths, H.D., N.R.W. “Long, Television Based Bistatic Radar,” IEE

Proceedings, Part F, Vol. 133, No. 7, December 1996.
[33] Guner, A. Ambiguity Function Analysis and Direct-Path Signal Filtering

of the Digital Audio Broadcast (DAB) Waveform for Passive Coherent
Location (PCL), M.S. Thesis, Air Force Institute of Technology, Wright-
Patterson AFB, OH, March 2002.

[34] Hall, T. D., C. C. Counselman, and P. Misra. “Instantaneous Radiolocation
Using AM Broadcast Signals,” Proceedings of ION-NTM, Long Beach, CA,
pp. 93-99, January 2001.

[35] Hall, T. D. Radiolocation Using AM Broadcast Signals, Ph.D. Dissertation,
Massachusetts Institute of Technology, Cambridge, MA, September 2002.

[36] Haykin, S. Communication Systems, 3rd Ed., John Wiley and Sons, New York,
NY, 1994.

[37] Ho, K. C. and Y. T. Chan. “Solution and Performance Analysis of Geolocation
by TDOA,” IEEE Transactions on Aerospace and Electronic Systems, Vol. 29,
No. 4, pp. 1311-1322, October 1993.

[38] Ho, K. C. and Y. T. Chan. “Geolocation of a Known Altitiude Object From
TDOA and FDOA Measurements,” IEEE Transactions on Aerospace and
Electronic Systems, Vol. 33, No. 3, pp. 770-782, July 1997.

[39] Howland, P. E. “Target Tracking Using Television-based Bistatic Radar,” IEE
Proceedings – Radar, Sonar, and Navigation, Vol. 146, No. 3, June 1999.

231



[40] Howland, P. E. Television Based Bistatic Radar, Ph.D. Dissertation, School
of Electronic and Electrical Engineering, University of Birmingham, England,
September 1997.

[41] ICO Website: www.ico.com
[42] Iridium Satellite LLC Website: www.iridium.com.
[43] Kay, Steven M. Fundamentals of Signal Processing—Estimation Theory,

Prentice Hall, 1993.
[44] Knapp, C. H. and G. C. Carter. “The Generalized Cross Correlation Method

for Estimation of Time Delay,” IEEE Transactions on Acoustics, Speech, and
Signal Processing, Vol. ASSP-24, No. 4, pp. 320-327, August 1976.

[45] MacDonald, V. H. and P. M. Schultheiss. “Optimum Passive Bearing
Estimation in a Spatially Incoherent Noise Environment,” The Journal of the
Acoustical Society of America, Vol. 46, No. 1-1, pp. 37-43, 1969.

[46] Maybeck, P. S. Combined Estimation of States and Parameters for On-Line
Applications, Ph.D. Dissertation, Massachusetts Institute of Technology,
Cambridge, MA, February 1972. Rep. T-557

[47] Maybeck, P. S. Stochastic Models, Estimation, and Control, Vol. 1, Navtech
Book and Software Store, Arlington, VA, 1994.

[48] Maybeck, P. S. Stochastic Models, Estimation, and Control, Vol. 2, Navtech
Book and Software Store, Arlington, VA, 1994.

[49] Mellen, G. T. Simulation and Analysis of a Time Difference of Arrival GPS
Jammer Location System, M.S. Thesis, Air Force Institute of Technology,
Wright-Patterson AFB, OH, March 2000. AFIT/GE/ENG/00M-11

[50] Mellen, G., M. Pachter, and J. Raquet. “Closed-Form Solution for Determining
Emitter Location Using Time Difference of Arrival Measurements,”
IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 3,
pp. 1056-1058, July 2003.

[51] Middleton, W. M. Reference Data for Engineers: Radio, Electronics,
Computer, and Communications, 9th Ed., Butterworth-Heinemann, 2002.
ISBN: 0-7506-7291-9

[52] Miller, G. M. Modern Electronic Communication, Prentice Hall, 1988.
[53] Misra, P., and Per Enge. Global Positioning System: Signals, Measurements,

and Performance, Ganga-Jamuna Press, Lincoln, MA, 2001.
[54] Pachter, M. and T. Nguyen. “An Efficient GPS Position Determination

232



Algorithm,” Navigation: Journal of the Institute of Navigation, Vol. 50, No. 2,
pp. 131-141, Summer 2003.

[55] Panter, P. F. Modulation, Noise, and Spectral Analysis — Applied to
Information Transmission, McGraw-Hill, New York, NY, 1965.

[56] Papoulis, A. Probability, Random Variables, and Stochastic Process, 3rd Ed.,
McGraw-Hill, New York, NY, 1991.

[57] Parkinson, B. W. and P. Axelrad. “Autonomous GPS Integrity Monitoring
Using the Pseudorange Residual,” Navigation: Journal of the Institute of
Navigation, Vol. 35, No. 2, pp. 255-274, 1988.

[58] Parkinson, B. W. and J. J. Spilker. Global Positioning System: Theory and
Applications, Vol. 1, American Institute of Aeronautics and Astronautics, Inc.,
Washington, DC, 1996.

[59] Priestley, M. B. Spectral Analysis, Vols. 1 and 2, Academic Press, NY, 1991.
[60] Raquet, J. F. Advanced GPS Theory and Applications, Classnotes, EENG 633,

Air Force Institute of Technology, Wright-Patterson AFB, OH, p. 11-147,
Summer 2002.

[61] Ringer, M.A., G.J. Frazer, S.J. Anderson. Waveform Analysis of Transmitters
of Opportunity for Passive Radar, DSTO Electronics and Surveillance Research
Laboratory, Salisbury, Australia, June 1999.

[62] Rabinowitz, M. and J. Spilker. Positioning Using the ATSC Digital Television
Signal, Whitepaper, Rosum Corporation, Redwood City, CA, August 2001.

[63] Rabinowitz, M. and J. Spilker. “The Rosum Television Positioning
Technology,” ION 59th Annual Meeting/CIGTF 22nd Guidance Test
Symposium, Albuquerque, NM, pp. 528-541, June 2003.

[64] Rudin, W. Real and Complex Analysis, 3rd Ed., McGraw-Hill, New York, NY,
pg. 164, 1986.

[65] Sahr, J. D., F. D. Lind. “The Manatash Ridge Radar: A Passive Bistatic
Radar for Upper Atmospheric Radio Science,” URSI 96, Preprint, University
of Washington, Seattle, WA, 1996.

[66] Satellite Constellation Visualization Website: http://savi.sourceforge.net/
[67] Scales, W. C. and R. Swanson. “Air and Sea Rescue via Satellite Systems,”

IEEE Spectrum, pp. 48-52, March 1984.
[68] Shanmugan, K. S. and A. M. Breipohl. Random Signals: Detection,

Estimation, and Data Analysis, John Wiley and Sons, 1988.

233



[69] Sheikh, S. I., et al. “The Use of x-Ray Pulsars for Spacecraft Navigation,”
14 th AAS/AIAA Space Flight Mechanics Conference, Paper #04-109, Maui,
HI, February, 2004.

[70] Sklar, B. Digital Communications–Fundamentals and Applications, 2nd Ed.,
Prentice Hall PTR, NJ, 2001.

[71] Skolnik, M. Introduction to Radar Systems, 3rd Ed., McGraw-Hill, New York,
NY, 2000.

[72] Smith, J. O. and J. S. Abel. “Closed-form Least Squares Location Estimation
from Range-Difference Measurements,” IEEE Transactions on Acoustics,
Speech, and Signal Processing, Vol. 35, pp. 1661-1669, December 1987.

[73] Swokowski, E. W. Calculus, 5th Ed., PWS-Kent Publishing Company, Boston,
MA, pg. 752, 1991.

[74] Taylor, J. and M. Ryba. “High Precision Timing of Millisecond Pulsars,” The
Astrophysical Journal, Vol. 371, 1991.

[75] Titchmarsh, E. C. Introduction to the Theory of Fourier Integrals, Oxford
University Press, London, 1948.

[76] Titterton, D. H. and J.L. Weston. Strapdown Inertial Navigation Technology,
IEE Books, Peter Peregrinus Ltd, UK, 1997.

[77] Torrieri, D. J. “Statistical Theory of Passive Location Systems,” IEEE
Transactions on Aerospace and Electronic Systems, Vol. 20, pp. 183-198,
March 1984.

[78] Van Trees, H. L. Detection, Estimation, and Modulation Theory, John Wiley
and Sons, New York, NY, 1968.

[79] Veth, M. and J. Raquet. “Precision Navigation Using Optical Images and
INS,” 2005 Joint Navigation Conference, 30th JSDE Conference, Orlando, FL,
April 2005.

[80] White, S. C. and N. C. Beaulieu. “On the Application of the Cramer Rao and
Detection Theory Bounds to Mean Square Error of Symbol Timing Recovery,”
IEEE Transactions on Communications, Vol. 40, No. 10, pp. 1635-1643,
October 1992.

[81] Willis, N. J. Bistatic Radar, Artech House, 1991.
[82] Zeira, A. and A. Nehorai. “Frequency Domain Cramer-Rao Bound for

Gaussian Processes,” IEEE Transactions on Acoustics, Speech, and Signal
Processing, Vol. 38, No. 6, June 1990.

234



[83] Zeira, A. and P. M. Schultheiss. “Realizable Lower Bounds for Time Delay
Estimation,” IEEE Transactions on Signal Processing, Vol. 41, No. 11,
pp. 3102-3113, November 1993.

[84] Zeira, A. and P. M. Schultheiss. “Realizable Lower Bounds for Time Delay
Estimation: Part 2–Threshold Phenomena,” IEEE Transactions on Signal
Processing, Vol. 42, No. 5, pp. 1001-1007, May 1994.

235



Vita
Captain Kenneth A. Fisher received the degree of Bachelor of Science in Electrical

Engineering from Ohio Northern University in May 1997. He received his commis-
sion through the Air Force ROTC program in May 1997 and reported directly to the
Air Force Institute of Technology (AFIT). In March 1999, he was awarded the Mas-
ters of Science in Electrical Engineering from AFIT and published a thesis entitled,
“Multiple Model Adaptive Estimation with Filter Spawning.” Captain Fisher then
worked as a spectral analyst in developing and testing hyperspectral algorithms for
the Advanced Branch, MASINT Division, National Air Intelligence Center (NAIC),
Wright-Patterson AFB, OH. In September 2001, he returned to AFIT in pursuit of
his Doctor of Philosophy degree.


	Dissertation-Cover-Page.pdf
	AIR FORCE INSTITUTE OF TECHNOLOGY




